💻
Code Snippet
  • Overview
  • General
    • Anaconda
  • GUI
    • PyQT
      • Qt Design
  • Pandas
    • Read Data
    • Replace
  • Articles
    • Python. PyQt
    • Offline Payment Wallet With Django
    • Documentation Encrypt File
    • Play With Pillow
  • Fontend
    • Snippet
    • Hugo
    • JavaScript
      • Form Validation
  • Finance
    • Library
      • yfinance
  • Notebook
    • Untitled
    • Snippet
  • Python
    • Download file
    • Date and Time
    • Snippet
    • Compile .exe
    • Overview
    • Google
      • Samples for Google Workspace
      • Drive
      • GoogleSheet
    • Virtual environment
    • Database
      • Pickle()
    • Datatypes
      • Excel
      • Dictionary
        • xmltodict()
    • File Handling
      • shutil()
      • Get the File Name
      • Get the Full Path
      • Check the File Size
      • Get File Creation Date
      • Find All File
        • Untitled
    • Dictionary
      • Convert Two Lists
  • Data Science
    • HTTP requests
  • Google Workspace
    • Overview
    • Apps Script
      • ์Note
      • Overview
      • Snippet
        • HTML Service
        • Fetch API
      • Quickstart
      • Google Sheets
        • Overview
          • Snippet
        • Fundamentals
          • Macros & Custom Functions
          • Spreadsheets, Sheets, and Ranges
          • Working with Data
          • Data Formatting
          • Chart and Present Data
        • Built-in Google Services
        • Fetch and format API data
        • Connected Sheets
  • Git
  • Mini Lab
    • Line
    • Python
  • Function
    • Python
      • Date&Time
  • Database
    • SQLite
      • Example
Powered by GitBook
On this page
  • Yahoo! Finance market data downloader
  • Quick Start
  • To initialize multiple Ticker objects, use
  • pandas_datareader override

Was this helpful?

  1. Finance
  2. Library

yfinance

PreviousLibraryNextNotebook

Last updated 3 years ago

Was this helpful?

Yahoo! Finance market data downloader

Quick Start

The Ticker module

The Ticker module, which allows you to access ticker data in a more Pythonic way:

Note: yahoo finance datetimes are received as UTC.

pip install yfinance
pip install yfinance --upgrade --no-cache-dir
conda install -c ranaroussi yfinance
import yfinance as yf

msft = yf.Ticker("MSFT")

# get stock info
msft.info

# get historical market data
hist = msft.history(period="max")

# show actions (dividends, splits)
msft.actions

# show dividends
msft.dividends

# show splits
msft.splits

# show financials
msft.financials
msft.quarterly_financials

# show major holders
msft.major_holders

# show institutional holders
msft.institutional_holders

# show balance sheet
msft.balance_sheet
msft.quarterly_balance_sheet

# show cashflow
msft.cashflow
msft.quarterly_cashflow

# show earnings
msft.earnings
msft.quarterly_earnings

# show sustainability
msft.sustainability

# show analysts recommendations
msft.recommendations

# show next event (earnings, etc)
msft.calendar

# show ISIN code - *experimental*
# ISIN = International Securities Identification Number
msft.isin

# show options expirations
msft.options

# get option chain for specific expiration
opt = msft.option_chain('YYYY-MM-DD')
# data available via: opt.calls, opt.puts

To initialize multiple Ticker objects, use

import yfinance as yf

tickers = yf.Tickers('msft aapl goog')
# ^ returns a named tuple of Ticker objects

# access each ticker using (example)
tickers.tickers.MSFT.info
tickers.tickers.AAPL.history(period="1mo")
tickers.tickers.GOOG.actions

Fetching data for multiple tickers

import yfinance as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30")

added some options to make life easier

data = yf.download(  # or pdr.get_data_yahoo(...
        # tickers list or string as well
        tickers = "SPY AAPL MSFT",

        # use "period" instead of start/end
        # valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max
        # (optional, default is '1mo')
        period = "ytd",

        # fetch data by interval (including intraday if period < 60 days)
        # valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo
        # (optional, default is '1d')
        interval = "1m",

        # group by ticker (to access via data['SPY'])
        # (optional, default is 'column')
        group_by = 'ticker',

        # adjust all OHLC automatically
        # (optional, default is False)
        auto_adjust = True,

        # download pre/post regular market hours data
        # (optional, default is False)
        prepost = True,

        # use threads for mass downloading? (True/False/Integer)
        # (optional, default is True)
        threads = True,

        # proxy URL scheme use use when downloading?
        # (optional, default is None)
        proxy = None
    )

pandas_datareader override

If your code uses pandas_datareader and you want to download data faster, you can “hijack” pandas_datareader.data.get_data_yahoo() method to use yfinance while making sure the returned data is in the same format as pandas_datareader’s get_data_yahoo().

from pandas_datareader import data as pdr

import yfinance as yf
yf.pdr_override() # <== that's all it takes :-)

# download dataframe
data = pdr.get_data_yahoo("SPY", start="2017-01-01", end="2017-04-30")

Optional (if you want to use pandas_datareader)

>= 0.4.0

https://pypi.org/project/yfinance/
pandas_datareader