📒
Knowledge-Base
  • Knowledge Base
  • Tutorials
    • Python
      • Introduction
      • Important basic syntax
      • Awesome Python
      • Python 101
      • Python Cheat sheet
      • āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ‚āļ­āļ‡āļ āļēāļĐāļē
      • Library & Package
      • Variable & Data Types
      • Lists
      • Dictionary
      • Function
      • Built-in Function
        • enumerate()
      • Modules
      • Classes & Objects
      • Inheritance
      • Date & Time
      • āļāļēāļĢāđƒāļŠāđ‰āļ‡āļēāļ™ Virtualenv
    • Pandas
      • Learning Pandas Second Edition
        • 2. Running with pandas
        • 3. Data with the Series
        • 4. Create DataFrame
        • 5. Manipulating DataFrame Structure
  • e-Book
    • Tech
      • Automate the Boring Stuff
      • A Whirlwind Tour of Python
  • Innovation & Tech
    • Python
    • Pandas
      • 10 Pandas tips
    • Web Scraping
      • Web Scraping 101
      • Requests and BeautifulSoup
  • Industry
    • 20 āđāļ™āļ§āļ„āļīāļ”āļ‚āļēāļĒāļ‚āļ­āļ‡āļ­āļ­āļ™āđ„āļĨāļ™āđŒ
    • āđāļœāļ™āļĢāļ°āļĒāļ°āļĒāļēāļ§āļ‚āļ­āļ‡ Toyota
    • āđ‚āļĨāļāļŦāļĨāļąāļ‡āļĒāļļāļ„āđ‚āļĨāļāļēāļ āļīāļ§āļąāļ’āļ™āđŒ
  • Opinion
    • āļšāļĢāļĢāļĒāļ‡ āļžāļ‡āļĐāđŒāļžāļēāļ™āļīāļŠ: āļāļąāļšāļ”āļąāļāļĢāļąāļāļĢāļēāļŠāļāļēāļĢ 4.0
    • āļ›āļąāļāļāļēāļ āļīāļāđ‚āļ āļ“ Wongnai WeShare
    • āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđƒāļ™āļ„āļ§āļēāļĄāļ„āļīāļ” āļ„āļ§āļēāļĄāļ„āļīāļ”āđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ
    • āļāļēāļĢāļŠāļ–āļēāļ›āļ™āļē ‘āļĢāļąāļāļšāļĢāļĢāļĐāļąāļ—āļ­āļģāļ™āļēāļˆāļ™āļīāļĒāļĄâ€™ āđƒāļ™āļŠāļąāļ‡āļ„āļĄāđ„āļ—āļĒ
  • People
    • “āļ„āļ§āļēāļĄāļŠāļģāđ€āļĢāđ‡āļˆ āļ”āļĩāđƒāļˆāđ„āļ”āđ‰āļ§āļąāļ™āđ€āļ”āļĩāļĒāļ§â€
    • āđ‚āļ‹āđ€āļŠāļĩāļĒāļĨāļĄāļĩāđ€āļ”āļĩāļĒ āđƒāļ™āļĄāļļāļĄāļĄāļ­āļ‡āļ‚āļ­āļ‡ āļĄāļēāļĢāđŒāļ āļ‹āļąāļāđ€āļ„āļ­āļĢāđŒāđ€āļšāļīāļĢāđŒāļ
  • Parent
    • ADULTIFICTION
    • āļ„āļ§āļēāļĄāļ‰āļĨāļēāļ”āļŠāļĢāđ‰āļēāļ‡āđ„āļ”āđ‰
    • āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āļ‚āļ­āļ‡āļĨāļđāļāđƒāļ™āļ§āļąāļ™āļ™āļĩāđ‰
    • CODING āļ„āļ·āļ­āļ­āļ°āđ„āļĢ
    • āļŠāļ­āļ™ CODING āļ­āļĒāđˆāļēāļ‡āđ„āļĢāđƒāļŦāđ‰āļ‡āđˆāļēāļĒ
    • 8 āļ‚āđ‰āļ­āļ„āļĢāļđāļ„āļ§āļĢāļĢāļđāđ‰ āđ€āļĄāļ·āđˆāļ­āļˆāļąāļ”āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āļœāđˆāļēāļ™āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒ
  • Lift
    • āļ„āļļāļ“āļĢāļđāđ‰āļŠāļķāļāļ§āđˆāļē āđ‚āļĨāļāļ—āļļāļāļ§āļąāļ™āļ™āļĩāđ‰āļŦāļĄāļļāļ™āđ€āļĢāđ‡āļ§āđāļĨāļ°āđāļ„āļšāļĨāļ‡āļŦāļĢāļ·āļ­āđ€āļ›āļĨāđˆāļē?
    • āļ›āļąāļˆāļˆāļļāļšāļąāļ™āđ€āļĢāļēāļ•āđ‰āļ­āļ‡āđ€āļœāļŠāļīāļāļāļąāļšāļ„āļ§āļēāļĄāļ—āđ‰āļēāļ—āļēāļĒāļ­āļ°āđ„āļĢāļšāđ‰āļēāļ‡
    • āļāļŽ 40% āļ‚āļ­āļ‡āļŦāļ™āđˆāļ§āļĒ SEAL
    • e-Book
      • Sapiens – A Brief History of Humankind
        • [āļŠāļĢāļļāļ›] āđ‚āļŪāđ‚āļĄ āđ€āļ‹āđ€āļ›āļĩāļĒāļ™āļŠāđŒ āļŠāļąāļ•āļ§āđŒāļĄāļŦāļąāļĻāļˆāļĢāļĢāļĒāđŒāđāļĨāļ°āļ–āļīāđˆāļ™āļ—āļĩāđˆāļ­āļĒāļđāđˆ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 1- āļāļģāđ€āļ™āļīāļ” Homo Sapiens
        • āļ•āļ­āļ™āļ—āļĩāđˆ 2 – āļŠāļīāđˆāļ‡āļ—āļĩāđˆāļ—āļģāđƒāļŦāđ‰āđ€āļĢāļēāļ„āļĢāļ­āļ‡āđ‚āļĨāļ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 3 – āļĒāļļāļ„āđāļŦāđˆāļ‡āļāļēāļĢāļĨāđˆāļēāļŠāļąāļ•āļ§āđŒāđ€āļāđ‡āļšāļžāļ·āļŠāļœāļĨ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 4 – āļāļēāļĢāļŦāļĨāļ­āļāļĨāļ§āļ‡āļ„āļĢāļąāđ‰āļ‡āļĒāļīāđˆāļ‡āđƒāļŦāļāđˆ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 5 – āļ„āļļāļāļ—āļĩāđˆāļĄāļ­āļ‡āđ„āļĄāđˆāđ€āļŦāđ‡āļ™
        • āļ•āļ­āļ™āļ—āļĩāđˆ 6 – āļāļģāđ€āļ™āļīāļ”āļ āļēāļĐāļēāđ€āļ‚āļĩāļĒāļ™
        • āļ•āļ­āļ™āļ—āļĩāđˆ 7 – āļ„āļ§āļēāļĄāđ€āļŦāļĨāļ·āđˆāļ­āļĄāļĨāđ‰āļģ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 8 – āđ‚āļĨāļāļ—āļĩāđˆāļ–āļđāļāļŦāļĨāļ­āļĄāļĢāļ§āļĄ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 9 – āļĄāļ™āļ•āļĢāļēāļ‚āļ­āļ‡āđ€āļ‡āļīāļ™āļ•āļĢāļē
        • āļ•āļ­āļ™āļ—āļĩāđˆ 10 – āļˆāļąāļāļĢāļ§āļĢāļĢāļ”āļī
        • āļ•āļ­āļ™āļ—āļĩāđˆ 11 – āļšāļ—āļšāļēāļ—āļ‚āļ­āļ‡āļĻāļēāļŠāļ™āļē
        • āļ•āļ­āļ™āļ—āļĩāđˆ 12 – āļĻāļēāļŠāļ™āļēāđ„āļĢāđ‰āļžāļĢāļ°āđ€āļˆāđ‰āļē
        • āļ•āļ­āļ™āļ—āļĩāđˆ 13 – āļĒāļļāļ„āđāļŦāđˆāļ‡āļ„āļ§āļēāļĄāđ„āļĄāđˆāļĢāļđāđ‰
        • āļ•āļ­āļ™āļ—āļĩāđˆ 14 – 500 āļ›āļĩāđāļŦāđˆāļ‡āļ„āļ§āļēāļĄāļāđ‰āļēāļ§āļŦāļ™āđ‰āļē
        • āļ•āļ­āļ™āļ—āļĩāđˆ 15 – āđ€āļĄāļ·āđˆāļ­āļĒāļļāđ‚āļĢāļ›āļ„āļĢāļ­āļ‡āđ‚āļĨāļ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 16 – āļŠāļ§āļąāļŠāļ”āļĩāļ—āļļāļ™āļ™āļīāļĒāļĄ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 17 – āļˆāļēāļ™āļ­āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļ‚āļ­āļ‡āļ™āđ‚āļ›āđ€āļĨāļĩāļĒāļ™
        • āļ•āļ­āļ™āļ—āļĩāđˆ 18 – āļ„āļĢāļ­āļšāļ„āļĢāļąāļ§āļĨāđˆāļĄāļŠāļĨāļēāļĒ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 19 – āļŠāļļāļ‚āļŠāļĄāļšāđˆāļĄāļīāļŠāļĄ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 20 – āļ­āļ§āļŠāļēāļ™ Sapiens
      • Homo Deus
        • [āļŠāļĢāļļāļ›āļŦāļ™āļąāļ‡āļŠāļ·āļ­] Homo Deus
        • āļ•āļ­āļ™āļ—āļĩāđˆ 1: āļŠāļēāļĄāļ§āļēāļĢāļ°āđƒāļŦāļĄāđˆāđāļŦāđˆāļ‡āļ­āļ™āļēāļ„āļ•
        • āļ•āļ­āļ™āļ—āļĩāđˆ 2: āļ„āļģāļŠāļēāļ›āđ€āļĢāļ·āđˆāļ­āļ‡āļ”āļĩāļ­āļļāļŠ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 3: āđ€āļ‹āđ€āļ›āļĩāļĒāļ™āļŠāđŒāļ„āļĢāļ­āļ‡āđ‚āļĨāļāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āđ„āļĢ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 4: āļžāļĨāļąāļ‡āļ‚āļ­āļ‡āļˆāļīāļ•āļ§āļīāļŠāļąāļĒāļĢāđˆāļ§āļĄ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 5: āļ‚āđ‰āļ­āļ•āļāļĨāļ‡āđ€āļĢāļ·āđˆāļ­āļ‡āļ„āļ§āļēāļĄāļ—āļąāļ™āļŠāļĄāļąāļĒāļāļąāļšāđ€āļ—āļ§āļ—āļąāļ“āļ‘āđŒ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 6: āļ›āļĨāļēāļĒāļ—āļēāļ‡āļ‚āļ­āļ‡āļāļēāļĢāļ›āļāļīāļ§āļąāļ•āļīāļĄāļ™āļļāļĐāļĒāđŒāļ™āļīāļĒāļĄāļ„āļ·āļ­āļ­āļ āļīāļĄāļ™āļļāļĐāļĒāđŒ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 7: āđ„āļĄāđˆāļĄāļĩāļ—āļąāđ‰āļ‡āđ€āļˆāļ•āļˆāļģāļ™āļ‡āđ€āļŠāļĢāļĩāđāļĨāļ°āļ§āļīāļāļāļēāļ“āđƒāļ™āđ‚āļĨāļāļ‚āļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ™āļīāļĒāļĄ (dataism)
        • āļ•āļ­āļ™āļ—āļĩāđˆ 8: āđ€āļ‹āđ€āļ›āļĩāļĒāļ™āļŠāđŒāļāļĨāļēāļĒāđ€āļ›āđ‡āļ™āļŠāļīāđˆāļ‡āļŠāļģāļĢāļļāļ”āļ—āļēāļ‡āļ›āļĢāļ°āļ§āļąāļ•āļīāļĻāļēāļŠāļ•āļĢāđŒāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āđ„āļĢ
        • āļ•āļ­āļ™āļ—āļĩāđˆ 9: āļĄāļīāļˆāļ‰āļēāļ—āļīāļāļīāļ—āļĩāđˆāļĢāđ‰āļēāļĒāđāļĢāļ‡āļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™āļĒāļļāļ„āļ‚āļąāļ­āļĄāļđāļĨāļ™āļīāļĒāļĄ (dataism)
        • āļ•āļ­āļ™āļ—āļĩāđˆ 10: āļžāļĨāļąāļ‡āļāļļāļ“āļ‘āļēāļĨāļīāļ™āļĩ āļ„āļ·āļ­āđ€āļŠāđ‰āļ™āļ—āļēāļ‡āļŠāļđāđˆāļ”āđ‰āļēāļ™āļŠāļ§āđˆāļēāļ‡āļ‚āļ­āļ‡ Homo Deus
        • āļ•āļ­āļ™āļ—āļĩāđˆ 11: āļ—āļĪāļĐāļŽāļĩāđāļŦāđˆāļ‡āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡â€‹(Theory​ of​ Everything)​āļ‚āļ­āļ‡āļĨāļąāļ—āļ˜āļīāļ‚āđ‰āļ­āļĄāļđāļĨāļ™āļīāļĒāļĄāļāļąāļšâ€‹āļ§āļīāļ–āļĩāđāļŦāđˆāļ‡āļ•āļąāļ§āļ•āļ™
        • āļ•āļ­āļ™āļ—āļĩāđˆ 12: āđ€āļĢāļēāļ•āđ‰āļ­āļ‡āļāđ‰āļēāļ§āļ‚āđ‰āļēāļĄāđāļ•āđˆāļŦāļĨāļ­āļĄāļĢāļ§āļĄāļĨāļąāļ—āļ˜āļīāļ‚āđ‰āļ­āļĄāļđāļĨāļ™āļīāļĒāļĄ
  • See Behind the FX rate
  • Obtaining Stock Prices
  • Monte Carlo Simulation in Finance Python Part-2
  • The Easiest Data Cleaning Method using Python & Pandas
  • How to use iloc and loc for Indexing and Slicing Pandas Dataframes
  • Converting HTML to a Jupyter Notebook
  • Top 50 Tips & Tricks
Powered by GitBook
On this page

Was this helpful?

Obtaining Stock Prices

PreviousSee Behind the FX rateNextMonte Carlo Simulation in Finance Python Part-2

Last updated 5 years ago

Was this helpful?

Python for finance: Obtaining Stock Prices

· 3 min read

Python is the most common coding language used in the world of finance. It’s flexibility allows python to be manipulated for finance. The SP500 is an american stock market index based on the market capitalization of 500 large companies. It is seen as a gauge of prosperity for businesses regulated by US law.

Step 1: List of Companies.

It is crucial to obtain accurate stock price information easily and quickly. You can obtain a list of all the companies in the SP500 on Wikipedia.

FIgure 1: Script for saving sp500 tickers

Python can be used to extract and save a list of tickers associated to each company using beautifulsoup; a python library for pulling data out of HTML and XML files, requests and pickle; a python module which implements binary protocols for serializing and de-serializing a python object structure (pickling object hierachy is converted into a byte stream). This process will save programmers hours of work in retrieving and saving information. Figure 1 is illustrates how within 20 lines of code, you can easily obtain a list of 500 companies from Wikipedia; from locating the table on the page to saving the key information.

Step 2: Stock data

Next, the stock price for each company must be retrieved. This process holds a lot of data which needs to be processed correctly.

Python can be used to extract stock information from websites such as Yahoo finance, Google finance using the data analysis library called Panda and module data reader. Pandas is great for data manipulation and analysis.

Figure 3 and figure 4 demonstrate how information from Yahoo finance for every SP500 company can be extracted and stored locally for future use, as continuously extracting information can become time consuming.

Step 3: Compile data

Finally, as we are only looking at the adjusted close for each stock price, we can combine all the companies into a single csv file.

Figure 5 shows how the code will delete the columns deemed unnecessary and join each company’s adjusted close to the end of the new csv file.

The data can now be manipulated and analyzed for modelling.

Disc: Self taught: For more information: pythonprogramming.net, sentdex.

FIgure 2: Output of SP500
Figure 4: Results in a folder of every company’s stock price.
Figure 4: Results in a folder of every company’s stock price.
Figure 5: Compiling the data
Figure 6: combined data frame output

Github:

https://github.com/MoRahmanWork/Py4Fin/blob/master/ObtainStockPrices
Jan 29, 2019