📉
Tutorials
  • Computer History
  • Function
    • Finance
      • Calculate
    • Manage Data
    • Date&Time
    • Strings and Character
  • Snippets
    • Web Application
      • Hugo
      • JavaScript
        • Stopwatch using JavaScript?
    • Note
    • Start Project
      • GitHub
      • GitLab
    • Python Programming
      • Strings and Character Data
      • List
      • Dictionaries
    • Data Science
      • Setting Option
      • Get Data
  • Link Center
    • Next Articles
    • Google
    • Excel VBA
    • Python
      • Notebook
    • WebApp
      • Vue.js
    • Finance
    • Project
      • Kids
        • Scratch
      • Finance
        • Plotly.js
        • Portfolio
      • Mini Lab
        • Systems Administration
        • Auto Adjust Image
      • Sending Emails
      • ECS
        • Knowledge Base
        • ระบบผู้เชี่ยวชาญ (Expert System)
        • Check product
        • Compare two SQL databases
      • e-Library
        • Knowledge base
        • การจัดหมวดหมู่ห้องสมุด
        • Temp
      • AppSheet
        • บัญชีรายรับรายจ่าย
      • Weather App
      • COVID-19
  • Tutorials
    • Data Science
      • Data Science IPython notebooks
    • UX & UI
      • 7 กฎการออกแบบ UI
    • Web Scraping
      • Scrape Wikipedia Articles
      • Quick Start
    • GUI
      • pysimple
        • Create a GUI
      • Tkinter
        • Python Tkinter Tutorial
      • PyQt
        • PyQt Tutorial
    • MachineLearning
      • การพัฒนา Chat Bot
      • AI ผู้ช่วยใหม่ในการทำ Customer Segmentation
      • Customer Segmentation
      • ตัดคำภาษาไทย ด้วย PyThaiNLP API
    • Excel & VBA
      • INDEX กับ MATCH
      • รวมสูตร Excel ปี 2020
      • How to Write Code in a Spreadsheet
    • Visualization
      • Bokeh
        • Part I: Getting Started
        • Data visualization
        • Plotting a Line Graph
        • Panel Document
        • Interactive Data Visualization
    • VueJS
      • VueJS - Quick Guide
    • Django
      • Customize the Django Admin
      • พัฒนาเว็บด้วย Django
    • Git
      • วิธีสร้าง SSH Key
      • Git คืออะไร
      • เริ่มต้นใช้งาน Git
      • การใช้งาน Git และ Github
      • รวม 10 คำสั่ง Git
      • GIT Push and Pull
    • Finance
      • Stock Analysis using Pandas (Series)
      • Building Investment AI for fintech
      • Resampling Time Series
      • Python for Finance (Series)
      • Stock Data Analysis (Second Edition)
      • Get Stock Data Using Python
      • Stock Price Trend Analysis
      • Calculate Stock Returns
      • Quantitative Trading
      • Backtrader for Backtesting
      • Binance Python API
      • Pine Script (TradingView)
      • Stocks Analysis with Pandas and Scikit-Learn
      • Yahoo Finance API
      • Sentiment Analysis
      • yfinance Library
      • Stock Data Analysis
      • YAHOO_FIN
      • Algorithmic Trading
    • JavaScript
      • Split a number
      • Callback Function
      • The Best JavaScript Examples
      • File and FileReader
      • JavaScript Tutorial
      • Build Reusable HTML Components
      • Developing JavaScript components
      • JavaScript - Quick Guide
      • JavaScript Style Guide()
      • Beginner's Handbook
      • Date Now
    • Frontend
      • HTML
        • File Path
      • Static Site Generators.
        • Creating a New Theme
    • Flask
      • Flask - Quick Guide
      • Flask Dashboards
        • Black Dashboard
        • Light Blue
        • Flask Dashboard Argon
      • Create Flask App
        • Creating First Application
        • Rendering Pages Using Jinja
      • Jinja Templates
        • Primer on Jinja Templating
        • Jinja Template Document
      • Learning Flask
        • Ep.1 Your first Flask app
        • Ep.2 Flask application structure
        • Ep.3 Serving HTML files
        • Ep.4 Serving static files
        • Ep.5 Jinja template inheritance
        • Ep.6 Jinja template design
        • Ep.7 Working with forms in Flask
        • Ep.8 Generating dynamic URLs in Flask
        • Ep.9 Working with JSON data
        • Ep.23 Deploying Flask to a VM
        • Ep.24 Flask and Docker
        • Ep. 25: uWSGI Introduction
        • Ep. 26 Flask before and after request
        • Ep. 27 uWSGI Decorators
        • Ep. 28 uWSGI Decorators
        • Ep. 29 Flask MethodView
        • Ep. 30 Application factory pattern
      • The Flask Mega-Tutorial
        • Chapter 2: Templates
      • Building Flask Apps
      • Practical Flask tutorial series
      • Compiling SCSS to CSS
      • Flask application structure
    • Database
      • READING FROM DATABASES
      • SQLite
        • Data Management
        • Fast subsets of large datasets
      • Pickle Module
        • How to Persist Objects
      • Python SQL Libraries
        • Create Python apps using SQL Server
    • Python
      • Python vs JavaScript
      • Python Pillow – Adjust Image
      • Python Library for Google Search
      • Python 3 - Quick Guide
      • Regular Expressions
        • Python Regular Expressions
        • Regular Expression (RegEx)
        • Validate ZIP Codes
        • Regular Expression Tutorial
      • Python Turtle
      • Python Beginner's Handbook
      • From Beginner to Pro
      • Standard Library
      • Datetime Tutorial
        • Manipulate Times, Dates, and Time Spans
      • Work With a PDF
      • geeksforgeeks.org
        • Python Tutorial
      • Class
      • Modules
        • Modules List
        • pickle Module
      • Working With Files
        • Open, Read, Append, and Other File Handling
        • File Manipulation
        • Reading & Writing to text files
      • Virtual Environments
        • Virtual Environments made easy
        • Virtual Environmen
        • A Primer
        • for Beginners
      • Functions
        • Function Guide
        • Inner Functions
      • Learning Python
        • Pt. 4 Python Strings
        • Pt. 3 Python Variables
      • Zip Function
      • Iterators
      • Try and Except
        • Exceptions: Introduction
        • Exceptions Handling
        • try and excep
        • Errors and Exceptions
        • Errors & Exceptions
      • Control Flow
      • Lambda Functions
        • Lambda Expression คืออะไร
        • map() Function
      • Date and Time
        • Python datetime()
        • Get Current Date and Time
        • datetime in Python
      • Awesome Python
      • Dictionary
        • Dictionary Comprehension
        • ALL ABOUT DICTIONARIES
        • DefaultDict Type for Handling Missing Keys
        • The Definitive Guide
        • Why Functions Modify Lists and Dictionaries
      • Python Structures
      • Variable & Data Types
      • List
        • Lists Explained
        • List Comprehensions
          • Python List Comprehension
          • List Comprehensions in 5-minutes
          • List Comprehension
        • Python List
      • String
        • Strings and Character Data
        • Splitting, Concatenating, and Joining Strings
      • String Formatting
        • Improved String Formatting Syntax
        • String Formatting Best Practices
        • Remove Space
        • Add Spaces
      • Important basic syntax
      • List all the packages
      • comment
    • Pandas
      • Tutorial (GeeksforGeeks)
      • 10 minutes to pandas
      • Options and settings
      • เริ่มต้น Set Up Kaggle.com
      • Pandas - Quick Guide
      • Cookbook
      • NumPy
        • NumPy Package for Scientific
      • IO tools (text, CSV, …)
      • pandas.concat
      • Excel & Google Sheets
        • A Guide to Excel
        • Quickstart to the Google Sheets
        • Python Excel Tutorial: The Definitive Guide
      • Working With Text Data
        • Quickstart
      • API Reference
      • Groupby
      • DateTime Methods
      • DataFrame
      • sort_values()
      • Pundit: Accessing Data in DataFrames
      • datatable
        • DataFrame: to_json()
        • pydatatable
      • Read and Write Files
      • Data Analysis with Pandas
      • Pandas and Python: Top 10
      • 10 minutes to pandas
      • Getting Started with Pandas in Python
    • Markdown
      • Create Responsive HTML Emails
      • Using Markup Languages with Hugo
    • AngularJS
      • Learn AngularJS
    • CSS
      • The CSS Handbook
      • Box Shadow
      • Image Center
      • The CSS Handbook
      • The CSS Handbook
      • Loading Animation
      • CSS Grid Layout
      • Background Image Size
      • Flexbox
  • Series
    • จาวาสคริปต์เบื้องต้น
      • 1: รู้จักกับจาวาสคริปต์
  • Articles
    • Visualization
      • Dash
        • Introducing Dash
    • Finance
      • PyPortfolioOpt
      • Best Libraries for Finance
      • Detection of price support
      • Portfolio Optimization
      • Python Packages For Finance
    • Django
      • เริ่มต้น Django RestFramework
    • General
      • Heroku คืออะไร
      • How to Crack Passwords
    • Notebook
      • IPython Documentation
      • Importing Notebooks
      • Google Colab for Data Analytics
      • Creating Interactive Dashboards
      • The Definitive Guide
      • A gallery of interesting Jupyter Notebooks
      • Advanced Jupyter Notebooks
      • Converting HTML to Notebook
    • Pandas
      • Pandas_UI
      • Pandas Style API
      • Difference Between two Dataframes
      • 19 Essential Snippets in Pandas
      • Time Series Analysis
      • Selecting Columns in a DataFrame
      • Cleaning Up Currency Data
      • Combine Multiple Excel Worksheets
      • Stylin’ with Pandas
      • Pythonic Data Cleaning
      • Make Excel Faster
      • Reading Excel (xlsx) Files
      • How to use iloc and loc for Indexing
      • The Easiest Data Cleaning Method
    • Python
      • pip install package
      • Automating your daily tasks
      • Convert Speech to Text
      • Tutorial, Project Ideas, and Tips
      • Image Handling and Processing
        • Image Processing Part I
        • Image Processing Part II
        • Image tutorial
        • Image Processing with Numpy
        • Converts PIL Image to Numpy Array
      • Convert Dictionary To JSON
      • JSON Dump
      • Speech-to-Text Model
      • Convert Text to Speech
      • Tips & Tricks
        • Fundamentals for Data Science
        • Best Python Code Examples
        • Top 50 Tips & Tricks
        • 11 Beginner Tips
        • 10 Tips & Tricks
      • Password hashing
      • psutil
      • Lambda Expressions
    • Web Scraping
      • Web Scraping using Python
      • Build a Web Scraper
      • Web Scraping for beginner
      • Beautiful Soup
      • Scrape Websites
      • Python Web Scraping
        • Web Scraping Part 1
        • Web Scraping Part 2
        • Web Scraping Part 3
        • Web Scraping Part 4
      • Web Scraper
    • Frontend
      • Book Online with GitBook
      • Progressive Web App คืออะไร
      • self-host a Hugo web app
  • Examples
    • Django
      • Build a Portfolio App
      • SchoolManagement
    • Flask
      • Flask Stock Visualizer
      • Flask by Example
      • Building Flask Apps
      • Flask 101
    • OpenCV
      • Build a Celebrity Look-Alike
      • Face Detection-OpenCV
    • Python
      • Make Game FLASH CARD
      • Sending emails using Google
      • ตรวจหาภาพซ้ำด้วย Perceptual hashing
        • Sending Emails in Python
      • Deck of Cards
      • Extract Wikipedia Data
      • Convert Python File to EXE
      • Business Machine Learning
      • python-business-analytics
      • Simple Blackjack Game
      • Python Turtle Clock
      • Countdown
      • 3D Animation : Moon Phases
      • Defragmentation Algorithm
      • PDF File
        • จัดการข้อความ และรูป จากไฟล์ PDF ด้วย PDFBox
      • Reading and Generating QR codes
      • Generating Password
        • generate one-time password (OTP)
        • Random Password Generator
        • Generating Strong Password
      • PyQt: Building Calculator
      • List Files in a Directory
      • [Project] qID – โปรแกรมแต่งรูปง่ายๆ เพื่อการอัพลงเว็บ
      • Python and Google Docs to Build Books
      • Tools for Record Linking
      • Create Responsive HTML Email
      • psutil()
      • Transfer Learning for Deep Learning
      • ดึงข้อมูลคุณภาพอากาศประเทศไทย
        • Image Classification
    • Web Scraper
      • Scrape Wikipedia Articles
        • Untitled
      • How Scrape Websites with Python 3
    • Finance
      • Algorithmic Trading for Beginners
      • Parse TradingView Stock
      • Creating a stock price database with MariaDB and python
      • Source Code
        • stocks-list
      • Visualizing with D3
      • Real Time Stock in Excel using Python
      • Create Stock Quote Module
      • The Magic Formula Lost Its Sparkle?
      • Stock Market Analysis
      • Stock Portfolio Analyses Part 1
      • Stock Portfolio Analyses Part 2
      • Build A Dashboard In Python
      • Stock Market Predictions with LSTM
      • Trading example
      • Algorithmic Trading Strategies
      • DOWNLOAD FUNDAMENTALS DATA
      • Algorithmic Trading
      • numfin
      • Financial Machine Learning
      • Algorithm To Predict Stock Direction
      • Interactive Brokers API Code
      • The (Artificially) Intelligent Investor
      • Create Auto-Updating Excel of Stock Market
      • Stock Market Predictions
      • Automate Your Stock Portfolio
      • create an analytics dashboard
      • Bitcoin Price Notifications
      • Portfolio Management
    • WebApp
      • CSS
        • The Best CSS Examples
      • JavaScript
        • Memory Game
      • School Clock
      • Frontend Tutorials & Example
      • Side Menu Bar with sub-menu
      • Create Simple CPU Monitor App
      • Vue.js building a converter app
      • jQuery
        • The Best jQuery Examples
      • Image Slideshow
      • Handle Timezones
      • Text to Speech with Javascript
      • Building Blog for Your Portfolio
      • Responsive Website Layout
      • Maths Homework Generator
  • Books
    • Finance
      • Python for Finance (O'Reilly)
    • Website
      • Hugo
        • Go Bootcamp
        • Hugo in Action.
          • About this MEAP
          • Welcome
          • 1. The JAM stack with Hugo
          • 2. Live in 30 minutes
          • 3. Using Markup for content
          • 4. Content Management with Hugo
          • 5. Custom Pages and Customized Content
          • 6. Structuring web pages
          • A Appendix A.
          • B Appendix B.
          • C Appendix C.
    • Python
      • ภาษาไพธอนเบื้องต้น
      • Python Cheatsheet
        • Python Cheatsheet
      • Beginning Python
      • IPython Cookbook
      • The Quick Python Book
        • Case study
        • Part 1. Starting out
          • 1. About Python
          • 2. Getting started
          • 3. The Quick Python overview
        • Part 2. The essentials
          • 14. Exceptions
          • 13. Reading and writing files
          • 12. Using the filesystem
          • 11. Python programs
          • 10. Modules and scoping rules
          • 9. Functions
          • 8. Control flow
          • 4. The absolute basics
          • 5. Lists, tuples, and sets
          • 6. Strings
          • 7. Dictionaries
        • Part 3. Advanced language features
          • 19. Using Python libraries
          • 18. Packages
          • 17. Data types as objects
          • 16. Regular expressions
          • 15. Classes and OOP
        • Part 4. Working with data
          • Appendix B. Exercise answers
          • Appendix A. Python’s documentation
          • 24. Exploring data
          • 23. Saving data
          • 20. Basic file wrangling
          • 21. Processing data files
          • 22. Data over the network
      • The Hitchhiker’s Guide to Python
      • A Whirlwind Tour of Python
        • 9. Defining Functions
      • Automate the Boring Stuff
        • 4. Lists
        • 5. Dictionaries
        • 12. Web Scraping
        • 13. Excel
        • 14. Google Sheets
        • 15. PDF and Word
        • 16. CSV and JSON
    • IPython
    • Pandas
      • จัดการข้อมูลด้วย pandas เบื้องต้น
      • Pandas Tutorial
  • Link Center
    • Temp
  • เทควันโด
    • รวมเทคนิค
    • Help and Documentation
  • Image
    • Logistics
Powered by GitBook
On this page
  • Detection of price support and resistance levels in Python
  • What are supports and resistances?
  • Levels or areas?
  • How to identify key levels
  • Fractals
  • Automatic detection in Python
  • Conclusions

Was this helpful?

  1. Articles
  2. Finance

Detection of price support

PreviousBest Libraries for FinanceNextPortfolio Optimization

Last updated 4 years ago

Was this helpful?

Detection of price support and resistance levels in Python

An algorithm to find price support and resistance levels in Python

Image for post

Algorithmic trading is a fascinating field of trading and statistics and one of the most useful trading techniques that quantitative traders often would like to automate is price action, which is the analysis of price movements without using derivated indicators such as oscillators or moving average.

In this article, I’ll cover an algorithm to automatically detect two important tools of price action, which are supports and resistances.

What are supports and resistances?

Supports and resistances are often called “key levels”. They are price levels at which the stock price has inverted its trend. If the price rises and then inverts its trend moving down, the highest point it has reached is called resistance. If the price has gone down and then starts rising, the lowest price value is called support.

Key levels are very important because many interesting events may occur near these inversion levels. For example, the market can bounce again allowing mean-reversion strategies to win or it can break the key level, making things better for breakout traders.

There’s a rule of thumb that says that the more times a key level has been tested (i.e. the market has bounced near it many times), the higher the importance of the level.

Levels or areas?

In this article, I’ll refer to key levels as price levels, but there are some traders saying that key levels are areas, not levels. That happens because volatility makes everything noisier, so supply and demand zones are never that clear. That’s why, in real life trading, you should always consider some kind of envelope around a key level, roughly as wide as volatility (e.g. Average True Range, Standard Deviation). For the seek of simplicity, in this article I’ll consider key levels as fixed price levels and not wider zones.

How to identify key levels

Key levels are rejection points, so we must check if the market has reached a certain level and then has rejected moving in the opposite direction.

A good idea is to use the candlestick chart and check the high and low prices of every candle. If a candle low is lower than the previous and the next candle’s low, that’s a support. This particular price action pattern is called swing. Unfortunately, this pattern often shows some flaws due do market volatility and noise, that’s why we can use a better pattern called fractal.

Fractals

Fractals are very useful because they remove some of the noise shown by the swings and identify key levels with higher accuracy. That’s why I’m going to use them in my algorithm.

Automatic detection in Python

Let’s first install yfinance and mpl_finance libraries.

!pip install yfinance
!pip install mpl_finance

Let’s import some useful libraries and initialize the plotting environment.

import pandas as pd
import numpy as np
import yfinance
from mpl_finance import candlestick_ohlc
import matplotlib.dates as mpl_dates
import matplotlib.pyplot as pltplt.rcParams['figure.figsize'] = [12, 7]
plt.rc('font', size=14)

Now we can download S&P 500 daily data.

name = 'SPY'
ticker = yfinance.Ticker(name)
df = ticker.history(interval="1d",start="2020-03-15", end="2020-07-15")df['Date'] = pd.to_datetime(df.index)
df['Date'] = df['Date'].apply(mpl_dates.date2num)
df = df.loc[:,['Date', 'Open', 'High', 'Low', 'Close']]

Let’s not create two functions that identify the 4-candles fractals.

def isSupport(df,i):
  support = df['Low'][i] < df['Low'][i-1]  and df['Low'][i] < df['Low'][i+1] and df['Low'][i+1] < df['Low'][i+2] and df['Low'][i-1] < df['Low'][i-2]  return supportdef isResistance(df,i):
  resistance = df['High'][i] > df['High'][i-1]  and df['High'][i] > df['High'][i+1] and df['High'][i+1] > df['High'][i+2] and df['High'][i-1] > df['High'][i-2]  return resistance

Finally, let’s create a list that will contain the levels we find. Each level is a tuple whose first element is the index of the signal candle and the second element is the price value.

levels = []
for i in range(2,df.shape[0]-2):
  if isSupport(df,i):
    levels.append((i,df['Low'][i]))
  elif isResistance(df,i):
    levels.append((i,df['High'][i]))

We can now define a function that plots price and key levels together.

def plot_all():
  fig, ax = plt.subplots()  candlestick_ohlc(ax,df.values,width=0.6, \
                   colorup='green', colordown='red', alpha=0.8)  date_format = mpl_dates.DateFormatter('%d %b %Y')
  ax.xaxis.set_major_formatter(date_format)
  fig.autofmt_xdate()  fig.tight_layout()  for level in levels:
    plt.hlines(level[1],xmin=df['Date'][level[0]],\
               xmax=max(df['Date']),colors='blue')
  fig.show()

As you can see, we have been able to detect the major rejection levels, but there’s still some noise. Some levels are over others, but they are essentially the same level.

We can clean this noise modifying the function that detects key levels. If a level is near another one, it will be discarded. We must decide what “near” means, then. We can say that a level is near another one if their distance is less than the average candle size in our chart (i.e. the average difference between high and low prices in a candle). This will give us a rough estimate of volatility.

s =  np.mean(df['High'] - df['Low'])

Let’s define a function that, given a price value, returns False if it is near some previously discovered key level.

def isFarFromLevel(l):
   return np.sum([abs(l-x) < s  for x in levels]) == 0

Now we can scan the price history looking for key levels using this function as a filter.

levels = []
for i in range(2,df.shape[0]-2):
  if isSupport(df,i):
    l = df['Low'][i]    if isFarFromLevel(l):
      levels.append((i,l))  elif isResistance(df,i):
    l = df['High'][i]    if isFarFromLevel(l):
      levels.append((i,l))

Now the levels are clearer, they do not overlay with each other and we can easily see that sometimes price jumps upon each level more than once.

Conclusions

Automating price levels can be very useful for a quantitative trader and can remove some of the market noise making the chart clearer. Key levels can be used for mean reversion strategies (i.e. buy when the price bounces away from a support level) or for breakout strategies (i.e. buy when price breaks a resistance level).

These price levels identify supply and demand zones, at which traders have increased their operation volume and have shown some interest. That’s why, as soon as the price gets closer to a key level, traders must keep their eyes open and see what happens.Support and resistance example

Another rule of thumb is that, once a resistance level is broken, it automatically becomes a support level. Viceversa, a broken support level becomes a resistance level.Resistance becomes support

A fractal is a candlestick pattern made by 5 candles. The third candle has the lowest low price, the previous candles have decreasing lows and the next candles have increasing lows. By this pattern, the low of the third candle is the support level. The same concept applies to resistance levels, where the third candle has the highest high of the five ones.Support identification using fractals

Let’s see an example in Python using S&P 500 data. My notebook can be found on GitHub here:

For all the candlestick charts code I’ve used some of the code found here:

Finally, we can plot the result.

Finally, we can plot everything again.

Reference :

https://github.com/gianlucamalato/machinelearning/blob/master/Support_and_resistance.ipynb
https://saralgyaan.com/posts/python-candlestick-chart-matplotlib-tutorial-chapter-11/
https://towardsdatascience.com/
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post