📉
Tutorials
  • Computer History
  • Function
    • Finance
      • Calculate
    • Manage Data
    • Date&Time
    • Strings and Character
  • Snippets
    • Web Application
      • Hugo
      • JavaScript
        • Stopwatch using JavaScript?
    • Note
    • Start Project
      • GitHub
      • GitLab
    • Python Programming
      • Strings and Character Data
      • List
      • Dictionaries
    • Data Science
      • Setting Option
      • Get Data
  • Link Center
    • Next Articles
    • Google
    • Excel VBA
    • Python
      • Notebook
    • WebApp
      • Vue.js
    • Finance
    • Project
      • Kids
        • Scratch
      • Finance
        • Plotly.js
        • Portfolio
      • Mini Lab
        • Systems Administration
        • Auto Adjust Image
      • Sending Emails
      • ECS
        • Knowledge Base
        • ระบบผู้เชี่ยวชาญ (Expert System)
        • Check product
        • Compare two SQL databases
      • e-Library
        • Knowledge base
        • การจัดหมวดหมู่ห้องสมุด
        • Temp
      • AppSheet
        • บัญชีรายรับรายจ่าย
      • Weather App
      • COVID-19
  • Tutorials
    • Data Science
      • Data Science IPython notebooks
    • UX & UI
      • 7 กฎการออกแบบ UI
    • Web Scraping
      • Scrape Wikipedia Articles
      • Quick Start
    • GUI
      • pysimple
        • Create a GUI
      • Tkinter
        • Python Tkinter Tutorial
      • PyQt
        • PyQt Tutorial
    • MachineLearning
      • การพัฒนา Chat Bot
      • AI ผู้ช่วยใหม่ในการทำ Customer Segmentation
      • Customer Segmentation
      • ตัดคำภาษาไทย ด้วย PyThaiNLP API
    • Excel & VBA
      • INDEX กับ MATCH
      • รวมสูตร Excel ปี 2020
      • How to Write Code in a Spreadsheet
    • Visualization
      • Bokeh
        • Part I: Getting Started
        • Data visualization
        • Plotting a Line Graph
        • Panel Document
        • Interactive Data Visualization
    • VueJS
      • VueJS - Quick Guide
    • Django
      • Customize the Django Admin
      • พัฒนาเว็บด้วย Django
    • Git
      • วิธีสร้าง SSH Key
      • Git คืออะไร
      • เริ่มต้นใช้งาน Git
      • การใช้งาน Git และ Github
      • รวล 10 คำสั่ง Git
      • GIT Push and Pull
    • Finance
      • Stock Analysis using Pandas (Series)
      • Building Investment AI for fintech
      • Resampling Time Series
      • Python for Finance (Series)
      • Stock Data Analysis (Second Edition)
      • Get Stock Data Using Python
      • Stock Price Trend Analysis
      • Calculate Stock Returns
      • Quantitative Trading
      • Backtrader for Backtesting
      • Binance Python API
      • Pine Script (TradingView)
      • Stocks Analysis with Pandas and Scikit-Learn
      • Yahoo Finance API
      • Sentiment Analysis
      • yfinance Library
      • Stock Data Analysis
      • YAHOO_FIN
      • Algorithmic Trading
    • JavaScript
      • Split a number
      • Callback Function
      • The Best JavaScript Examples
      • File and FileReader
      • JavaScript Tutorial
      • Build Reusable HTML Components
      • Developing JavaScript components
      • JavaScript - Quick Guide
      • JavaScript Style Guide()
      • Beginner's Handbook
      • Date Now
    • Frontend
      • HTML
        • File Path
      • Static Site Generators.
        • Creating a New Theme
    • Flask
      • Flask - Quick Guide
      • Flask Dashboards
        • Black Dashboard
        • Light Blue
        • Flask Dashboard Argon
      • Create Flask App
        • Creating First Application
        • Rendering Pages Using Jinja
      • Jinja Templates
        • Primer on Jinja Templating
        • Jinja Template Document
      • Learning Flask
        • Ep.1 Your first Flask app
        • Ep.2 Flask application structure
        • Ep.3 Serving HTML files
        • Ep.4 Serving static files
        • Ep.5 Jinja template inheritance
        • Ep.6 Jinja template design
        • Ep.7 Working with forms in Flask
        • Ep.8 Generating dynamic URLs in Flask
        • Ep.9 Working with JSON data
        • Ep.23 Deploying Flask to a VM
        • Ep.24 Flask and Docker
        • Ep. 25: uWSGI Introduction
        • Ep. 26 Flask before and after request
        • Ep. 27 uWSGI Decorators
        • Ep. 28 uWSGI Decorators
        • Ep. 29 Flask MethodView
        • Ep. 30 Application factory pattern
      • The Flask Mega-Tutorial
        • Chapter 2: Templates
      • Building Flask Apps
      • Practical Flask tutorial series
      • Compiling SCSS to CSS
      • Flask application structure
    • Database
      • READING FROM DATABASES
      • SQLite
        • Data Management
        • Fast subsets of large datasets
      • Pickle Module
        • How to Persist Objects
      • Python SQL Libraries
        • Create Python apps using SQL Server
    • Python
      • Python vs JavaScript
      • Python Pillow – Adjust Image
      • Python Library for Google Search
      • Python 3 - Quick Guide
      • Regular Expressions
        • Python Regular Expressions
        • Regular Expression (RegEx)
        • Validate ZIP Codes
        • Regular Expression Tutorial
      • Python Turtle
      • Python Beginner's Handbook
      • From Beginner to Pro
      • Standard Library
      • Datetime Tutorial
        • Manipulate Times, Dates, and Time Spans
      • Work With a PDF
      • geeksforgeeks.org
        • Python Tutorial
      • Class
      • Modules
        • Modules List
        • pickle Module
      • Working With Files
        • Open, Read, Append, and Other File Handling
        • File Manipulation
        • Reading & Writing to text files
      • Virtual Environments
        • Virtual Environments made easy
        • Virtual Environmen
        • A Primer
        • for Beginners
      • Functions
        • Function Guide
        • Inner Functions
      • Learning Python
        • Pt. 4 Python Strings
        • Pt. 3 Python Variables
      • Zip Function
      • Iterators
      • Try and Except
        • Exceptions: Introduction
        • Exceptions Handling
        • try and excep
        • Errors and Exceptions
        • Errors & Exceptions
      • Control Flow
      • Lambda Functions
        • Lambda Expression คืออะไร
        • map() Function
      • Date and Time
        • Python datetime()
        • Get Current Date and Time
        • datetime in Python
      • Awesome Python
      • Dictionary
        • Dictionary Comprehension
        • ALL ABOUT DICTIONARIES
        • DefaultDict Type for Handling Missing Keys
        • The Definitive Guide
        • Why Functions Modify Lists and Dictionaries
      • Python Structures
      • Variable & Data Types
      • List
        • Lists Explained
        • List Comprehensions
          • Python List Comprehension
          • List Comprehensions in 5-minutes
          • List Comprehension
        • Python List
      • String
        • Strings and Character Data
        • Splitting, Concatenating, and Joining Strings
      • String Formatting
        • Improved String Formatting Syntax
        • String Formatting Best Practices
        • Remove Space
        • Add Spaces
      • Important basic syntax
      • List all the packages
      • comment
    • Pandas
      • Tutorial (GeeksforGeeks)
      • 10 minutes to pandas
      • Options and settings
      • เริ่มต้น Set Up Kaggle.com
      • Pandas - Quick Guide
      • Cookbook
      • NumPy
        • NumPy Package for Scientific
      • IO tools (text, CSV, …)
      • pandas.concat
      • Excel & Google Sheets
        • A Guide to Excel
        • Quickstart to the Google Sheets
        • Python Excel Tutorial: The Definitive Guide
      • Working With Text Data
        • Quickstart
      • API Reference
      • Groupby
      • DateTime Methods
      • DataFrame
      • sort_values()
      • Pundit: Accessing Data in DataFrames
      • datatable
        • DataFrame: to_json()
        • pydatatable
      • Read and Write Files
      • Data Analysis with Pandas
      • Pandas and Python: Top 10
      • 10 minutes to pandas
      • Getting Started with Pandas in Python
    • Markdown
      • Create Responsive HTML Emails
      • Using Markup Languages with Hugo
    • AngularJS
      • Learn AngularJS
    • CSS
      • The CSS Handbook
      • Box Shadow
      • Image Center
      • The CSS Handbook
      • The CSS Handbook
      • Loading Animation
      • CSS Grid Layout
      • Background Image Size
      • Flexbox
  • Series
    • จาวาสคริปต์เบื้องต้น
      • 1: รู้จักกับจาวาสคริปต์
  • Articles
    • Visualization
      • Dash
        • Introducing Dash
    • Finance
      • PyPortfolioOpt
      • Best Libraries for Finance
      • Detection of price support
      • Portfolio Optimization
      • Python Packages For Finance
    • Django
      • เริ่มต้น Django RestFramework
    • General
      • Heroku คืออะไร
      • How to Crack Passwords
    • Notebook
      • IPython Documentation
      • Importing Notebooks
      • Google Colab for Data Analytics
      • Creating Interactive Dashboards
      • The Definitive Guide
      • A gallery of interesting Jupyter Notebooks
      • Advanced Jupyter Notebooks
      • Converting HTML to Notebook
    • Pandas
      • Pandas_UI
      • Pandas Style API
      • Difference Between two Dataframes
      • 19 Essential Snippets in Pandas
      • Time Series Analysis
      • Selecting Columns in a DataFrame
      • Cleaning Up Currency Data
      • Combine Multiple Excel Worksheets
      • Stylin’ with Pandas
      • Pythonic Data Cleaning
      • Make Excel Faster
      • Reading Excel (xlsx) Files
      • How to use iloc and loc for Indexing
      • The Easiest Data Cleaning Method
    • Python
      • pip install package
      • Automating your daily tasks
      • Convert Speech to Text
      • Tutorial, Project Ideas, and Tips
      • Image Handling and Processing
        • Image Processing Part I
        • Image Processing Part II
        • Image tutorial
        • Image Processing with Numpy
        • Converts PIL Image to Numpy Array
      • Convert Dictionary To JSON
      • JSON Dump
      • Speech-to-Text Model
      • Convert Text to Speech
      • Tips & Tricks
        • Fundamentals for Data Science
        • Best Python Code Examples
        • Top 50 Tips & Tricks
        • 11 Beginner Tips
        • 10 Tips & Tricks
      • Password hashing
      • psutil
      • Lambda Expressions
    • Web Scraping
      • Web Scraping using Python
      • Build a Web Scraper
      • Web Scraping for beginner
      • Beautiful Soup
      • Scrape Websites
      • Python Web Scraping
        • Web Scraping Part 1
        • Web Scraping Part 2
        • Web Scraping Part 3
        • Web Scraping Part 4
      • Web Scraper
    • Frontend
      • Book Online with GitBook
      • Progressive Web App คืออะไร
      • self-host a Hugo web app
  • Examples
    • Django
      • Build a Portfolio App
      • SchoolManagement
    • Flask
      • Flask Stock Visualizer
      • Flask by Example
      • Building Flask Apps
      • Flask 101
    • OpenCV
      • Build a Celebrity Look-Alike
      • Face Detection-OpenCV
    • Python
      • Make Game FLASH CARD
      • Sending emails using Google
      • ตรวจหาภาพซ้ำด้วย Perceptual hashing
        • Sending Emails in Python
      • Deck of Cards
      • Extract Wikipedia Data
      • Convert Python File to EXE
      • Business Machine Learning
      • python-business-analytics
      • Simple Blackjack Game
      • Python Turtle Clock
      • Countdown
      • 3D Animation : Moon Phases
      • Defragmentation Algorithm
      • PDF File
        • จัดการข้อความ และรูป จากไฟล์ PDF ด้วย PDFBox
      • Reading and Generating QR codes
      • Generating Password
        • generate one-time password (OTP)
        • Random Password Generator
        • Generating Strong Password
      • PyQt: Building Calculator
      • List Files in a Directory
      • [Project] qID – โปรแกรมแต่งรูปง่ายๆ เพื่อการอัพลงเว็บ
      • Python and Google Docs to Build Books
      • Tools for Record Linking
      • Create Responsive HTML Email
      • psutil()
      • Transfer Learning for Deep Learning
      • ดึงข้อมูลคุณภาพอากาศประเทศไทย
        • Image Classification
    • Web Scraper
      • Scrape Wikipedia Articles
        • Untitled
      • How Scrape Websites with Python 3
    • Finance
      • Algorithmic Trading for Beginners
      • Parse TradingView Stock
      • Creating a stock price database with MariaDB and python
      • Source Code
        • stocks-list
      • Visualizing with D3
      • Real Time Stock in Excel using Python
      • Create Stock Quote Module
      • The Magic Formula Lost Its Sparkle?
      • Stock Market Analysis
      • Stock Portfolio Analyses Part 1
      • Stock Portfolio Analyses Part 2
      • Build A Dashboard In Python
      • Stock Market Predictions with LSTM
      • Trading example
      • Algorithmic Trading Strategies
      • DOWNLOAD FUNDAMENTALS DATA
      • Algorithmic Trading
      • numfin
      • Financial Machine Learning
      • Algorithm To Predict Stock Direction
      • Interactive Brokers API Code
      • The (Artificially) Intelligent Investor
      • Create Auto-Updating Excel of Stock Market
      • Stock Market Predictions
      • Automate Your Stock Portfolio
      • create an analytics dashboard
      • Bitcoin Price Notifications
      • Portfolio Management
    • WebApp
      • CSS
        • The Best CSS Examples
      • JavaScript
        • Memory Game
      • School Clock
      • Frontend Tutorials & Example
      • Side Menu Bar with sub-menu
      • Create Simple CPU Monitor App
      • Vue.js building a converter app
      • jQuery
        • The Best jQuery Examples
      • Image Slideshow
      • Handle Timezones
      • Text to Speech with Javascript
      • Building Blog for Your Portfolio
      • Responsive Website Layout
      • Maths Homework Generator
  • Books
    • Finance
      • Python for Finance (O'Reilly)
    • Website
      • Hugo
        • Go Bootcamp
        • Hugo in Action.
          • About this MEAP
          • Welcome
          • 1. The JAM stack with Hugo
          • 2. Live in 30 minutes
          • 3. Using Markup for content
          • 4. Content Management with Hugo
          • 5. Custom Pages and Customized Content
          • 6. Structuring web pages
          • A Appendix A.
          • B Appendix B.
          • C Appendix C.
    • Python
      • ภาษาไพธอนเบื้องต้น
      • Python Cheatsheet
        • Python Cheatsheet
      • Beginning Python
      • IPython Cookbook
      • The Quick Python Book
        • Case study
        • Part 1. Starting out
          • 1. About Python
          • 2. Getting started
          • 3. The Quick Python overview
        • Part 2. The essentials
          • 14. Exceptions
          • 13. Reading and writing files
          • 12. Using the filesystem
          • 11. Python programs
          • 10. Modules and scoping rules
          • 9. Functions
          • 8. Control flow
          • 4. The absolute basics
          • 5. Lists, tuples, and sets
          • 6. Strings
          • 7. Dictionaries
        • Part 3. Advanced language features
          • 19. Using Python libraries
          • 18. Packages
          • 17. Data types as objects
          • 16. Regular expressions
          • 15. Classes and OOP
        • Part 4. Working with data
          • Appendix B. Exercise answers
          • Appendix A. Python’s documentation
          • 24. Exploring data
          • 23. Saving data
          • 20. Basic file wrangling
          • 21. Processing data files
          • 22. Data over the network
      • The Hitchhiker’s Guide to Python
      • A Whirlwind Tour of Python
        • 9. Defining Functions
      • Automate the Boring Stuff
        • 4. Lists
        • 5. Dictionaries
        • 12. Web Scraping
        • 13. Excel
        • 14. Google Sheets
        • 15. PDF and Word
        • 16. CSV and JSON
    • IPython
    • Pandas
      • จัดการข้อมูลด้วย pandas เบื้องต้น
      • Pandas Tutorial
  • Link Center
    • Temp
  • เทควันโด
    • รวมเทคนิค
    • Help and Documentation
  • Image
    • Logistics
Powered by GitBook
On this page
  • Parse TradingView Stock Recommendations in Seconds!
  • Introduction to TradingView
  • Scraping TradingView Using Python
  • Setup
  • Let’s get into the code

Was this helpful?

  1. Examples
  2. Finance

Parse TradingView Stock

PreviousAlgorithmic Trading for BeginnersNextCreating a stock price database with MariaDB and python

Last updated 4 years ago

Was this helpful?

Parse TradingView Stock Recommendations in Seconds!

Learn how to parse real-time recommendations for any interval with Python!

In , we went over how to parse the top analyst recommendations from Yahoo Finance for any stock. While they offered validation as to where a stock might move in the future, they were only updated once a month and did not offer any info as to the rationale behind the rating.

Luckily, since then, I’ve stumbled upon the wonderful site . If you aren’t familiar with the site, one of the features they offer is real-time recommendations for as short as 1 minute ahead or for as long as 1 month ahead. These recommendations are purely based on Technical Indicators including Moving Averages, Oscillators, and Pivots and you can see the calculations directly on the page!

So instead of visiting the site each time I wanted a recommendation, I created this simple parser with less than 50 lines of code that can do just that.

Photo by Nick Chong on Unsplash

Introduction to TradingView

If you continue scrolling down on the Technicals page, there will be multiple charts like the one below, outlining the recommendation and the statistics for the reasoning behind the signal.

The recommendations range from strong buy to strong sell and as you can see in the second image, they are entirely dependent on the technical indicator signals. The algorithm we will be building soon parses the number of buy signals, neutral signals, sell signals, and the overall recommendation. The GitHub gist below contains all the code!

Scraping TradingView Using Python

# Imports 
import time
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager

# Parameters
ticker = 'TSLA'
interval = '1M'

# Set up chromedriver
options = Options()
options.add_argument("--headless")
webdriver = webdriver.Chrome(ChromeDriverManager().install(), options = options)

# Declare list variable
analysis = []

# Error handling
try:
    # Open tradingview's site
    webdriver.get("https://s.tradingview.com/embed-widget/technical-analysis/?locale=en#%7B%22interval%22%3A%22{}%22%2C%22width%22%3A%22100%25%22%2C%22isTransparent%22%3Afalse%2C%22height%22%3A%22100%25%22%2C%22symbol%22%3A%22{}%22%2C%22showIntervalTabs%22%3Atrue%2C%22colorTheme%22%3A%22dark%22%2C%22utm_medium%22%3A%22widget_new%22%2C%22utm_campaign%22%3A%22technical-analysis%22%7D".format(interval, ticker))
    webdriver.refresh()
    time.sleep(1)
    
    # Recommendation
    recommendation_element = webdriver.find_element_by_class_name("speedometerSignal-pyzN--tL")
    analysis.append(recommendation_element.get_attribute('innerHTML'))
    
    # Counters
    counter_elements = webdriver.find_elements_by_class_name("counterNumber-3l14ys0C")
    
    # Sell, Neutral, and Buy Signal Counts
    analysis.append(int(counter_elements[0].get_attribute('innerHTML')))
    analysis.append(int(counter_elements[1].get_attribute('innerHTML')))
    analysis.append(int(counter_elements[2].get_attribute('innerHTML')))
    
    # Set up DataFrame
    df = pd.DataFrame.from_records([tuple(analysis)], columns=['Overall Recommendation', '# of Sell Signals', '# of Neutral Signals', '# of Buy Signals'])
    df['Ticker'] = [ticker]
    print (df.set_index('Ticker').T)

except Exception as e:
    print (f'Could not get the recommendation due to {e}')

Setup

Let’s get into the code

Now that everything should be installed on your machine and you have an idea for what we will be scraping, let’s get into the code!

First, we have to import the dependencies we will need for the rest of the program. In this case, we will need the built-in time module, Pandas, and Selenium.

The time module will allow us to make the program sleep for a number of seconds just so the simulated browser can fully load. Pandas will allow us to create a DataFrame with the data we collect. Finally, we will need selenium so we can create/control a browser window and scrape the JavaScript-rendered information.

Next, we can create two variables, one for the ticker and the other for the interval we are particularly scraping for. The interval can be any of the ones I included in the code fence below.

#===================================================================
# Intervals: 
# 1m for 1 minute
# 15m for 15 minutes
# 1h for 1 hour
# 4h for 4 hours
# 1D for 1 day
# 1W for 1 week
# 1M for 1 month
# ==================================================================

After we include the imports and parameters, we can set up the chromedriver. The Options class will allow us to add arguments such as headless to customize the simulated browser. Adding headless tells the browser to not pop up each time you run the program. We can set the executable path to the path where you downloaded the chromedriver earlier. In this case, I downloaded it directly into my directory but you do not have to.

We can add our scraping script inside a try/except block to catch errors from breaking our program. First, we must open up the browser using webdriver.get(URL), refresh to load all aspects of the page properly, and then add time.sleep(1) to slow down the program by one second until the browser is completely rendered.

Using the .find_by_class_name method in selenium.webdriver, we can pinpoint the exact portions we want to scrape. For example, only the recommendation has the following class “speedometerSignal-pyzN — tL.” We can retrieve these class names by inspect element in Chrome DevTools. Top open up DevTools, you can right-click on the section you’d like to parse and then press “inspect” to get a similar result to the image below!

We can retrieve the “Buy” using the method .get_attribute(‘innerHTML’) which will store the text that is inside the HTML tag.

Similarly, we can retrieve the number of buy, neutral, and sell signals by finding a class name that is similar between all of them and then using the method .find_elements_by_class_name. Since this time we are calling for elements, not an element, this method will return a list of HTML tags that have the class name we specify.

Lastly, we can append all of the signals to a list, and using the .from_records method, we can turn a tuple of our data and a list of columns into a DataFrame. Finally, we can clean it up by adding a column for the ticker, setting that column as the index, and transposing (rotating) the DataFrame for our final product.

Now within seconds, you should get a similar output to the image above. I hope this algorithm will prove useful to you in the future. Thank you so much for reading!

Disclaimer: The material in this article is purely educational and should not be taken as professional investment advice. Invest at your own discretion.

Before I get into the coding aspect, I want to quickly touch upon what and where these recommendations are on TradingView. If you go over to this , you will see something similar to the image I included below. The page includes key statistics such as Price to Earnings ratio, Earnings Per Share, Market Cap, Dividend information, and much more. You can even click Overview to get a comprehensive table full of ratios as well as an interactive chart, and recent news. However, this isn’t where the recommendations are located.

Top of Apple TradingView page
TradingView Recommendation Chart (what we’ll be scraping)
TradingView Technical Indicator Statistics

In case you do not have or installed, you can visit their respective links and download them using pip in your terminal! We will also need a chromedriver (the simulated chrome browser Selenium controls) and to download it using Python you can the package also found in PyPi.

Additionally, you can use any IDE or Text Editor that supports Python as long as you have the necessary dependencies installed. I personally would recommend downloading either Visual Studio Code or Spyder through .

Chrome DevTools
Program Output

Reference :

page
Selenium
Pandas
webdriver-manager
Anaconda
https://towardsdatascience.com
one of my earlier articles
TradingView