📉
Tutorials
  • Computer History
  • Function
    • Finance
      • Calculate
    • Manage Data
    • Date&Time
    • Strings and Character
  • Snippets
    • Web Application
      • Hugo
      • JavaScript
        • Stopwatch using JavaScript?
    • Note
    • Start Project
      • GitHub
      • GitLab
    • Python Programming
      • Strings and Character Data
      • List
      • Dictionaries
    • Data Science
      • Setting Option
      • Get Data
  • Link Center
    • Next Articles
    • Google
    • Excel VBA
    • Python
      • Notebook
    • WebApp
      • Vue.js
    • Finance
    • Project
      • Kids
        • Scratch
      • Finance
        • Plotly.js
        • Portfolio
      • Mini Lab
        • Systems Administration
        • Auto Adjust Image
      • Sending Emails
      • ECS
        • Knowledge Base
        • ระบบผู้เชี่ยวชาญ (Expert System)
        • Check product
        • Compare two SQL databases
      • e-Library
        • Knowledge base
        • การจัดหมวดหมู่ห้องสมุด
        • Temp
      • AppSheet
        • บัญชีรายรับรายจ่าย
      • Weather App
      • COVID-19
  • Tutorials
    • Data Science
      • Data Science IPython notebooks
    • UX & UI
      • 7 กฎการออกแบบ UI
    • Web Scraping
      • Scrape Wikipedia Articles
      • Quick Start
    • GUI
      • pysimple
        • Create a GUI
      • Tkinter
        • Python Tkinter Tutorial
      • PyQt
        • PyQt Tutorial
    • MachineLearning
      • การพัฒนา Chat Bot
      • AI ผู้ช่วยใหม่ในการทำ Customer Segmentation
      • Customer Segmentation
      • ตัดคำภาษาไทย ด้วย PyThaiNLP API
    • Excel & VBA
      • INDEX กับ MATCH
      • รวมสูตร Excel ปี 2020
      • How to Write Code in a Spreadsheet
    • Visualization
      • Bokeh
        • Part I: Getting Started
        • Data visualization
        • Plotting a Line Graph
        • Panel Document
        • Interactive Data Visualization
    • VueJS
      • VueJS - Quick Guide
    • Django
      • Customize the Django Admin
      • พัฒนาเว็บด้วย Django
    • Git
      • วิธีสร้าง SSH Key
      • Git คืออะไร
      • เริ่มต้นใช้งาน Git
      • การใช้งาน Git และ Github
      • รวม 10 คำสั่ง Git
      • GIT Push and Pull
    • Finance
      • Stock Analysis using Pandas (Series)
      • Building Investment AI for fintech
      • Resampling Time Series
      • Python for Finance (Series)
      • Stock Data Analysis (Second Edition)
      • Get Stock Data Using Python
      • Stock Price Trend Analysis
      • Calculate Stock Returns
      • Quantitative Trading
      • Backtrader for Backtesting
      • Binance Python API
      • Pine Script (TradingView)
      • Stocks Analysis with Pandas and Scikit-Learn
      • Yahoo Finance API
      • Sentiment Analysis
      • yfinance Library
      • Stock Data Analysis
      • YAHOO_FIN
      • Algorithmic Trading
    • JavaScript
      • Split a number
      • Callback Function
      • The Best JavaScript Examples
      • File and FileReader
      • JavaScript Tutorial
      • Build Reusable HTML Components
      • Developing JavaScript components
      • JavaScript - Quick Guide
      • JavaScript Style Guide()
      • Beginner's Handbook
      • Date Now
    • Frontend
      • HTML
        • File Path
      • Static Site Generators.
        • Creating a New Theme
    • Flask
      • Flask - Quick Guide
      • Flask Dashboards
        • Black Dashboard
        • Light Blue
        • Flask Dashboard Argon
      • Create Flask App
        • Creating First Application
        • Rendering Pages Using Jinja
      • Jinja Templates
        • Primer on Jinja Templating
        • Jinja Template Document
      • Learning Flask
        • Ep.1 Your first Flask app
        • Ep.2 Flask application structure
        • Ep.3 Serving HTML files
        • Ep.4 Serving static files
        • Ep.5 Jinja template inheritance
        • Ep.6 Jinja template design
        • Ep.7 Working with forms in Flask
        • Ep.8 Generating dynamic URLs in Flask
        • Ep.9 Working with JSON data
        • Ep.23 Deploying Flask to a VM
        • Ep.24 Flask and Docker
        • Ep. 25: uWSGI Introduction
        • Ep. 26 Flask before and after request
        • Ep. 27 uWSGI Decorators
        • Ep. 28 uWSGI Decorators
        • Ep. 29 Flask MethodView
        • Ep. 30 Application factory pattern
      • The Flask Mega-Tutorial
        • Chapter 2: Templates
      • Building Flask Apps
      • Practical Flask tutorial series
      • Compiling SCSS to CSS
      • Flask application structure
    • Database
      • READING FROM DATABASES
      • SQLite
        • Data Management
        • Fast subsets of large datasets
      • Pickle Module
        • How to Persist Objects
      • Python SQL Libraries
        • Create Python apps using SQL Server
    • Python
      • Python vs JavaScript
      • Python Pillow – Adjust Image
      • Python Library for Google Search
      • Python 3 - Quick Guide
      • Regular Expressions
        • Python Regular Expressions
        • Regular Expression (RegEx)
        • Validate ZIP Codes
        • Regular Expression Tutorial
      • Python Turtle
      • Python Beginner's Handbook
      • From Beginner to Pro
      • Standard Library
      • Datetime Tutorial
        • Manipulate Times, Dates, and Time Spans
      • Work With a PDF
      • geeksforgeeks.org
        • Python Tutorial
      • Class
      • Modules
        • Modules List
        • pickle Module
      • Working With Files
        • Open, Read, Append, and Other File Handling
        • File Manipulation
        • Reading & Writing to text files
      • Virtual Environments
        • Virtual Environments made easy
        • Virtual Environmen
        • A Primer
        • for Beginners
      • Functions
        • Function Guide
        • Inner Functions
      • Learning Python
        • Pt. 4 Python Strings
        • Pt. 3 Python Variables
      • Zip Function
      • Iterators
      • Try and Except
        • Exceptions: Introduction
        • Exceptions Handling
        • try and excep
        • Errors and Exceptions
        • Errors & Exceptions
      • Control Flow
      • Lambda Functions
        • Lambda Expression คืออะไร
        • map() Function
      • Date and Time
        • Python datetime()
        • Get Current Date and Time
        • datetime in Python
      • Awesome Python
      • Dictionary
        • Dictionary Comprehension
        • ALL ABOUT DICTIONARIES
        • DefaultDict Type for Handling Missing Keys
        • The Definitive Guide
        • Why Functions Modify Lists and Dictionaries
      • Python Structures
      • Variable & Data Types
      • List
        • Lists Explained
        • List Comprehensions
          • Python List Comprehension
          • List Comprehensions in 5-minutes
          • List Comprehension
        • Python List
      • String
        • Strings and Character Data
        • Splitting, Concatenating, and Joining Strings
      • String Formatting
        • Improved String Formatting Syntax
        • String Formatting Best Practices
        • Remove Space
        • Add Spaces
      • Important basic syntax
      • List all the packages
      • comment
    • Pandas
      • Tutorial (GeeksforGeeks)
      • 10 minutes to pandas
      • Options and settings
      • เริ่มต้น Set Up Kaggle.com
      • Pandas - Quick Guide
      • Cookbook
      • NumPy
        • NumPy Package for Scientific
      • IO tools (text, CSV, …)
      • pandas.concat
      • Excel & Google Sheets
        • A Guide to Excel
        • Quickstart to the Google Sheets
        • Python Excel Tutorial: The Definitive Guide
      • Working With Text Data
        • Quickstart
      • API Reference
      • Groupby
      • DateTime Methods
      • DataFrame
      • sort_values()
      • Pundit: Accessing Data in DataFrames
      • datatable
        • DataFrame: to_json()
        • pydatatable
      • Read and Write Files
      • Data Analysis with Pandas
      • Pandas and Python: Top 10
      • 10 minutes to pandas
      • Getting Started with Pandas in Python
    • Markdown
      • Create Responsive HTML Emails
      • Using Markup Languages with Hugo
    • AngularJS
      • Learn AngularJS
    • CSS
      • The CSS Handbook
      • Box Shadow
      • Image Center
      • The CSS Handbook
      • The CSS Handbook
      • Loading Animation
      • CSS Grid Layout
      • Background Image Size
      • Flexbox
  • Series
    • จาวาสคริปต์เบื้องต้น
      • 1: รู้จักกับจาวาสคริปต์
  • Articles
    • Visualization
      • Dash
        • Introducing Dash
    • Finance
      • PyPortfolioOpt
      • Best Libraries for Finance
      • Detection of price support
      • Portfolio Optimization
      • Python Packages For Finance
    • Django
      • เริ่มต้น Django RestFramework
    • General
      • Heroku คืออะไร
      • How to Crack Passwords
    • Notebook
      • IPython Documentation
      • Importing Notebooks
      • Google Colab for Data Analytics
      • Creating Interactive Dashboards
      • The Definitive Guide
      • A gallery of interesting Jupyter Notebooks
      • Advanced Jupyter Notebooks
      • Converting HTML to Notebook
    • Pandas
      • Pandas_UI
      • Pandas Style API
      • Difference Between two Dataframes
      • 19 Essential Snippets in Pandas
      • Time Series Analysis
      • Selecting Columns in a DataFrame
      • Cleaning Up Currency Data
      • Combine Multiple Excel Worksheets
      • Stylin’ with Pandas
      • Pythonic Data Cleaning
      • Make Excel Faster
      • Reading Excel (xlsx) Files
      • How to use iloc and loc for Indexing
      • The Easiest Data Cleaning Method
    • Python
      • pip install package
      • Automating your daily tasks
      • Convert Speech to Text
      • Tutorial, Project Ideas, and Tips
      • Image Handling and Processing
        • Image Processing Part I
        • Image Processing Part II
        • Image tutorial
        • Image Processing with Numpy
        • Converts PIL Image to Numpy Array
      • Convert Dictionary To JSON
      • JSON Dump
      • Speech-to-Text Model
      • Convert Text to Speech
      • Tips & Tricks
        • Fundamentals for Data Science
        • Best Python Code Examples
        • Top 50 Tips & Tricks
        • 11 Beginner Tips
        • 10 Tips & Tricks
      • Password hashing
      • psutil
      • Lambda Expressions
    • Web Scraping
      • Web Scraping using Python
      • Build a Web Scraper
      • Web Scraping for beginner
      • Beautiful Soup
      • Scrape Websites
      • Python Web Scraping
        • Web Scraping Part 1
        • Web Scraping Part 2
        • Web Scraping Part 3
        • Web Scraping Part 4
      • Web Scraper
    • Frontend
      • Book Online with GitBook
      • Progressive Web App คืออะไร
      • self-host a Hugo web app
  • Examples
    • Django
      • Build a Portfolio App
      • SchoolManagement
    • Flask
      • Flask Stock Visualizer
      • Flask by Example
      • Building Flask Apps
      • Flask 101
    • OpenCV
      • Build a Celebrity Look-Alike
      • Face Detection-OpenCV
    • Python
      • Make Game FLASH CARD
      • Sending emails using Google
      • ตรวจหาภาพซ้ำด้วย Perceptual hashing
        • Sending Emails in Python
      • Deck of Cards
      • Extract Wikipedia Data
      • Convert Python File to EXE
      • Business Machine Learning
      • python-business-analytics
      • Simple Blackjack Game
      • Python Turtle Clock
      • Countdown
      • 3D Animation : Moon Phases
      • Defragmentation Algorithm
      • PDF File
        • จัดการข้อความ และรูป จากไฟล์ PDF ด้วย PDFBox
      • Reading and Generating QR codes
      • Generating Password
        • generate one-time password (OTP)
        • Random Password Generator
        • Generating Strong Password
      • PyQt: Building Calculator
      • List Files in a Directory
      • [Project] qID – โปรแกรมแต่งรูปง่ายๆ เพื่อการอัพลงเว็บ
      • Python and Google Docs to Build Books
      • Tools for Record Linking
      • Create Responsive HTML Email
      • psutil()
      • Transfer Learning for Deep Learning
      • ดึงข้อมูลคุณภาพอากาศประเทศไทย
        • Image Classification
    • Web Scraper
      • Scrape Wikipedia Articles
        • Untitled
      • How Scrape Websites with Python 3
    • Finance
      • Algorithmic Trading for Beginners
      • Parse TradingView Stock
      • Creating a stock price database with MariaDB and python
      • Source Code
        • stocks-list
      • Visualizing with D3
      • Real Time Stock in Excel using Python
      • Create Stock Quote Module
      • The Magic Formula Lost Its Sparkle?
      • Stock Market Analysis
      • Stock Portfolio Analyses Part 1
      • Stock Portfolio Analyses Part 2
      • Build A Dashboard In Python
      • Stock Market Predictions with LSTM
      • Trading example
      • Algorithmic Trading Strategies
      • DOWNLOAD FUNDAMENTALS DATA
      • Algorithmic Trading
      • numfin
      • Financial Machine Learning
      • Algorithm To Predict Stock Direction
      • Interactive Brokers API Code
      • The (Artificially) Intelligent Investor
      • Create Auto-Updating Excel of Stock Market
      • Stock Market Predictions
      • Automate Your Stock Portfolio
      • create an analytics dashboard
      • Bitcoin Price Notifications
      • Portfolio Management
    • WebApp
      • CSS
        • The Best CSS Examples
      • JavaScript
        • Memory Game
      • School Clock
      • Frontend Tutorials & Example
      • Side Menu Bar with sub-menu
      • Create Simple CPU Monitor App
      • Vue.js building a converter app
      • jQuery
        • The Best jQuery Examples
      • Image Slideshow
      • Handle Timezones
      • Text to Speech with Javascript
      • Building Blog for Your Portfolio
      • Responsive Website Layout
      • Maths Homework Generator
  • Books
    • Finance
      • Python for Finance (O'Reilly)
    • Website
      • Hugo
        • Go Bootcamp
        • Hugo in Action.
          • About this MEAP
          • Welcome
          • 1. The JAM stack with Hugo
          • 2. Live in 30 minutes
          • 3. Using Markup for content
          • 4. Content Management with Hugo
          • 5. Custom Pages and Customized Content
          • 6. Structuring web pages
          • A Appendix A.
          • B Appendix B.
          • C Appendix C.
    • Python
      • ภาษาไพธอนเบื้องต้น
      • Python Cheatsheet
        • Python Cheatsheet
      • Beginning Python
      • IPython Cookbook
      • The Quick Python Book
        • Case study
        • Part 1. Starting out
          • 1. About Python
          • 2. Getting started
          • 3. The Quick Python overview
        • Part 2. The essentials
          • 14. Exceptions
          • 13. Reading and writing files
          • 12. Using the filesystem
          • 11. Python programs
          • 10. Modules and scoping rules
          • 9. Functions
          • 8. Control flow
          • 4. The absolute basics
          • 5. Lists, tuples, and sets
          • 6. Strings
          • 7. Dictionaries
        • Part 3. Advanced language features
          • 19. Using Python libraries
          • 18. Packages
          • 17. Data types as objects
          • 16. Regular expressions
          • 15. Classes and OOP
        • Part 4. Working with data
          • Appendix B. Exercise answers
          • Appendix A. Python’s documentation
          • 24. Exploring data
          • 23. Saving data
          • 20. Basic file wrangling
          • 21. Processing data files
          • 22. Data over the network
      • The Hitchhiker’s Guide to Python
      • A Whirlwind Tour of Python
        • 9. Defining Functions
      • Automate the Boring Stuff
        • 4. Lists
        • 5. Dictionaries
        • 12. Web Scraping
        • 13. Excel
        • 14. Google Sheets
        • 15. PDF and Word
        • 16. CSV and JSON
    • IPython
    • Pandas
      • จัดการข้อมูลด้วย pandas เบื้องต้น
      • Pandas Tutorial
  • Link Center
    • Temp
  • เทควันโด
    • รวมเทคนิค
    • Help and Documentation
  • Image
    • Logistics
Powered by GitBook
On this page
  • IPython Cookbook, Second Edition (2018)
  • Contents
  • Contributing
  • Presentation

Was this helpful?

  1. Books
  2. Python

IPython Cookbook

PreviousBeginning PythonNextThe Quick Python Book

Last updated 5 years ago

Was this helpful?

IPython Cookbook, Second Edition (2018)

Book : SourceCode :

Contents

Contributing

Presentation

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform.

IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning.

The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high- performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics

IPython Interactive Computing and Visualization Cookbook, Second Edition (2018), by , contains over 100 hands-on recipes on high-performance numerical computing and data science in the Jupyter Notebook.

Most of the book is freely available on this website ().

▶ ▶ ▶

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Recipes marked with an asterisk * are only available in the .

For any comment, question, or error, please or .

Cyrille Rossant
CC-BY-NC-ND license
Get the code as Jupyter notebooks
Get the Google Chrome extension to see LaTeX equations on GitHub
Buy the book
Chapter 1 : A Tour of Interactive Computing with Jupyter and IPython
1.1. Introducing IPython and the Jupyter Notebook
1.2. Getting started with exploratory data analysis in the Jupyter Notebook
1.3. Introducing the multidimensional array in NumPy for fast array computations
1.4. Creating an IPython extension with custom magic commands
1.5. Mastering IPython's configuration system
1.6. Creating a simple kernel for Jupyter
Chapter 2 : Best practices in Interactive Computing
2.1. Learning the basics of the Unix shell
2.2. Using the latest features of Python 3
2.3. Learning the basics of the distributed version control system Git
2.4. A typical workflow with Git branching
2.5. Efficient interactive computing workflows with IPython
2.6. Ten tips for conducting reproducible interactive computing experiments
2.7. Writing high-quality Python code
2.8. Writing unit tests with py.test
2.9. Debugging code with IPython
Chapter 3 : Mastering the Jupyter Notebook
3.1. Teaching programming in the Notebook with IPython blocks
3.2. Converting a Jupyter notebook to other formats with nbconvert
3.3. Mastering widgets in the Jupyter Notebook
3.4. Creating custom Jupyter Notebook widgets in Python, HTML, and JavaScript
3.5. Configuring the Jupyter Notebook
3.6. Introducing JupyterLab
Chapter 4 : Profiling and Optimization
4.1. Evaluating the time taken by a command in IPython
4.2. Profiling your code easily with cProfile and IPython
4.3. Profiling your code line-by-line with line_profiler
4.4. Profiling the memory usage of your code with memory_profiler
4.5. Understanding the internals of NumPy to avoid unnecessary array copying
4.6. Using stride tricks with NumPy
4.7. Implementing an efficient rolling average algorithm with stride tricks
4.8. Processing large NumPy arrays with memory mapping
4.9. Manipulating large arrays with HDF5
Chapter 5 : High-Performance Computing
5.1. Knowing Python to write faster code
5.2. Accelerating pure Python code with Numba and just-in-time compilation
5.3. Accelerating array computations with Numexpr
5.4. Wrapping a C library in Python with ctypes
5.5. Accelerating Python code with Cython
5.6. Optimizing Cython code by writing less Python and more C
5.7. Releasing the GIL to take advantage of multi-core processors with Cython and OpenMP
5.8. Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA
5.9. Distributing Python code across multiple cores with IPython
5.10. Interacting with asynchronous parallel tasks in IPython
5.11. Performing out-of-core computations on large arrays with Dask
5.12. Trying the Julia programming language in the Jupyter Notebook
Chapter 6 : Data Visualization
6.1. Using matplotlib styles
6.2. Creating statistical plots easily with seaborn
6.3. Creating interactive Web visualizations with Bokeh and HoloViews
6.4. Visualizing a NetworkX graph in the Notebook with D3.js
6.5. Discovering interactive visualization libraries in the Notebook
6.6. Creating plots with Altair and the Vega-Lite specification
Chapter 7 : Statistical Data Analysis
7.1. Exploring a dataset with pandas and matplotlib
7.2. Getting started with statistical hypothesis testing — a simple z-test
7.3. Getting started with Bayesian methods
7.4. Estimating the correlation between two variables with a contingency table and a chi-squared test
7.5. Fitting a probability distribution to data with the maximum likelihood method
7.6. Estimating a probability distribution nonparametrically with a kernel density estimation
7.7. Fitting a Bayesian model by sampling from a posterior distribution with a Markov Chain Monte Carlo method
7.8. Analyzing data with the R programming language in the Jupyter Notebook
Chapter 8 : Machine Learning
8.1. Getting started with scikit-learn
8.2. Predicting who will survive on the Titanic with logistic regression
8.3. Learning to recognize handwritten digits with a K-nearest neighbors classifier
8.4. Learning from text — Naive Bayes for Natural Language Processing
8.5. Using support vector machines for classification tasks
8.6. Using a random forest to select important features for regression
8.7. Reducing the dimensionality of a dataset with a principal component analysis
8.8. Detecting hidden structures in a dataset with clustering
Chapter 9 : Numerical Optimization
9.1. Finding the root of a mathematical function
9.2. Minimizing a mathematical function
9.3. Fitting a function to data with nonlinear least squares
9.4. Finding the equilibrium state of a physical system by minimizing its potential energy
Chapter 10 : Signal Processing
10.1. Analyzing the frequency components of a signal with a Fast Fourier Transform
10.2. Applying a linear filter to a digital signal
10.3. Computing the autocorrelation of a time series
Chapter 11 : Image and Audio Processing
11.1. Manipulating the exposure of an image
11.2. Applying filters on an image
11.3. Segmenting an image
11.4. Finding points of interest in an image
11.5. Detecting faces in an image with OpenCV
11.6. Applying digital filters to speech sounds
11.7. Creating a sound synthesizer in the Notebook
Chapter 12 : Deterministic Dynamical Systems
12.1. Plotting the bifurcation diagram of a chaotic dynamical system
12.2. Simulating an elementary cellular automaton
12.3. Simulating an ordinary differential equation with SciPy
12.4. Simulating a partial differential equation — reaction-diffusion systems and Turing patterns
Chapter 13 : Stochastic Dynamical Systems
13.1. Simulating a discrete-time Markov chain
13.2. Simulating a Poisson process
13.3. Simulating a Brownian motion
13.4. Simulating a stochastic differential equation
Chapter 14 : Graphs, Geometry, and Geographic Information Systems
14.1. Manipulating and visualizing graphs with NetworkX
14.2. Drawing flight routes with NetworkX
14.3. Resolving dependencies in a directed acyclic graph with a topological sort
14.4. Computing connected components in an image
14.5. Computing the Voronoi diagram of a set of points
14.6. Manipulating geospatial data with Cartopy
14.7. Creating a route planner for a road network
Chapter 15 : Symbolic and Numerical Mathematics
15.1. Diving into symbolic computing with SymPy
15.2. Solving equations and inequalities
15.3. Analyzing real-valued functions
15.4. Computing exact probabilities and manipulating random variables
15.5. A bit of number theory with SymPy
15.6. Finding a Boolean propositional formula from a truth table
15.7. Analyzing a nonlinear differential system — Lotka-Volterra (predator-prey) equations
15.8. Getting started with Sage
book
open an issue
propose a pull request
https://ipython-books.github.io/
https://github.com/ipython-books/cookbook-2nd-code