📉
Tutorials
  • Computer History
  • Function
    • Finance
      • Calculate
    • Manage Data
    • Date&Time
    • Strings and Character
  • Snippets
    • Web Application
      • Hugo
      • JavaScript
        • Stopwatch using JavaScript?
    • Note
    • Start Project
      • GitHub
      • GitLab
    • Python Programming
      • Strings and Character Data
      • List
      • Dictionaries
    • Data Science
      • Setting Option
      • Get Data
  • Link Center
    • Next Articles
    • Google
    • Excel VBA
    • Python
      • Notebook
    • WebApp
      • Vue.js
    • Finance
    • Project
      • Kids
        • Scratch
      • Finance
        • Plotly.js
        • Portfolio
      • Mini Lab
        • Systems Administration
        • Auto Adjust Image
      • Sending Emails
      • ECS
        • Knowledge Base
        • ระบบผู้เชี่ยวชาญ (Expert System)
        • Check product
        • Compare two SQL databases
      • e-Library
        • Knowledge base
        • การจัดหมวดหมู่ห้องสมุด
        • Temp
      • AppSheet
        • บัญชีรายรับรายจ่าย
      • Weather App
      • COVID-19
  • Tutorials
    • Data Science
      • Data Science IPython notebooks
    • UX & UI
      • 7 กฎการออกแบบ UI
    • Web Scraping
      • Scrape Wikipedia Articles
      • Quick Start
    • GUI
      • pysimple
        • Create a GUI
      • Tkinter
        • Python Tkinter Tutorial
      • PyQt
        • PyQt Tutorial
    • MachineLearning
      • การพัฒนา Chat Bot
      • AI ผู้ช่วยใหม่ในการทำ Customer Segmentation
      • Customer Segmentation
      • ตัดคำภาษาไทย ด้วย PyThaiNLP API
    • Excel & VBA
      • INDEX กับ MATCH
      • รวมสูตร Excel ปี 2020
      • How to Write Code in a Spreadsheet
    • Visualization
      • Bokeh
        • Part I: Getting Started
        • Data visualization
        • Plotting a Line Graph
        • Panel Document
        • Interactive Data Visualization
    • VueJS
      • VueJS - Quick Guide
    • Django
      • Customize the Django Admin
      • พัฒนาเว็บด้วย Django
    • Git
      • วิธีสร้าง SSH Key
      • Git คืออะไร
      • เริ่มต้นใช้งาน Git
      • การใช้งาน Git และ Github
      • รวม 10 คำสั่ง Git
      • GIT Push and Pull
    • Finance
      • Stock Analysis using Pandas (Series)
      • Building Investment AI for fintech
      • Resampling Time Series
      • Python for Finance (Series)
      • Stock Data Analysis (Second Edition)
      • Get Stock Data Using Python
      • Stock Price Trend Analysis
      • Calculate Stock Returns
      • Quantitative Trading
      • Backtrader for Backtesting
      • Binance Python API
      • Pine Script (TradingView)
      • Stocks Analysis with Pandas and Scikit-Learn
      • Yahoo Finance API
      • Sentiment Analysis
      • yfinance Library
      • Stock Data Analysis
      • YAHOO_FIN
      • Algorithmic Trading
    • JavaScript
      • Split a number
      • Callback Function
      • The Best JavaScript Examples
      • File and FileReader
      • JavaScript Tutorial
      • Build Reusable HTML Components
      • Developing JavaScript components
      • JavaScript - Quick Guide
      • JavaScript Style Guide()
      • Beginner's Handbook
      • Date Now
    • Frontend
      • HTML
        • File Path
      • Static Site Generators.
        • Creating a New Theme
    • Flask
      • Flask - Quick Guide
      • Flask Dashboards
        • Black Dashboard
        • Light Blue
        • Flask Dashboard Argon
      • Create Flask App
        • Creating First Application
        • Rendering Pages Using Jinja
      • Jinja Templates
        • Primer on Jinja Templating
        • Jinja Template Document
      • Learning Flask
        • Ep.1 Your first Flask app
        • Ep.2 Flask application structure
        • Ep.3 Serving HTML files
        • Ep.4 Serving static files
        • Ep.5 Jinja template inheritance
        • Ep.6 Jinja template design
        • Ep.7 Working with forms in Flask
        • Ep.8 Generating dynamic URLs in Flask
        • Ep.9 Working with JSON data
        • Ep.23 Deploying Flask to a VM
        • Ep.24 Flask and Docker
        • Ep. 25: uWSGI Introduction
        • Ep. 26 Flask before and after request
        • Ep. 27 uWSGI Decorators
        • Ep. 28 uWSGI Decorators
        • Ep. 29 Flask MethodView
        • Ep. 30 Application factory pattern
      • The Flask Mega-Tutorial
        • Chapter 2: Templates
      • Building Flask Apps
      • Practical Flask tutorial series
      • Compiling SCSS to CSS
      • Flask application structure
    • Database
      • READING FROM DATABASES
      • SQLite
        • Data Management
        • Fast subsets of large datasets
      • Pickle Module
        • How to Persist Objects
      • Python SQL Libraries
        • Create Python apps using SQL Server
    • Python
      • Python vs JavaScript
      • Python Pillow – Adjust Image
      • Python Library for Google Search
      • Python 3 - Quick Guide
      • Regular Expressions
        • Python Regular Expressions
        • Regular Expression (RegEx)
        • Validate ZIP Codes
        • Regular Expression Tutorial
      • Python Turtle
      • Python Beginner's Handbook
      • From Beginner to Pro
      • Standard Library
      • Datetime Tutorial
        • Manipulate Times, Dates, and Time Spans
      • Work With a PDF
      • geeksforgeeks.org
        • Python Tutorial
      • Class
      • Modules
        • Modules List
        • pickle Module
      • Working With Files
        • Open, Read, Append, and Other File Handling
        • File Manipulation
        • Reading & Writing to text files
      • Virtual Environments
        • Virtual Environments made easy
        • Virtual Environmen
        • A Primer
        • for Beginners
      • Functions
        • Function Guide
        • Inner Functions
      • Learning Python
        • Pt. 4 Python Strings
        • Pt. 3 Python Variables
      • Zip Function
      • Iterators
      • Try and Except
        • Exceptions: Introduction
        • Exceptions Handling
        • try and excep
        • Errors and Exceptions
        • Errors & Exceptions
      • Control Flow
      • Lambda Functions
        • Lambda Expression คืออะไร
        • map() Function
      • Date and Time
        • Python datetime()
        • Get Current Date and Time
        • datetime in Python
      • Awesome Python
      • Dictionary
        • Dictionary Comprehension
        • ALL ABOUT DICTIONARIES
        • DefaultDict Type for Handling Missing Keys
        • The Definitive Guide
        • Why Functions Modify Lists and Dictionaries
      • Python Structures
      • Variable & Data Types
      • List
        • Lists Explained
        • List Comprehensions
          • Python List Comprehension
          • List Comprehensions in 5-minutes
          • List Comprehension
        • Python List
      • String
        • Strings and Character Data
        • Splitting, Concatenating, and Joining Strings
      • String Formatting
        • Improved String Formatting Syntax
        • String Formatting Best Practices
        • Remove Space
        • Add Spaces
      • Important basic syntax
      • List all the packages
      • comment
    • Pandas
      • Tutorial (GeeksforGeeks)
      • 10 minutes to pandas
      • Options and settings
      • เริ่มต้น Set Up Kaggle.com
      • Pandas - Quick Guide
      • Cookbook
      • NumPy
        • NumPy Package for Scientific
      • IO tools (text, CSV, …)
      • pandas.concat
      • Excel & Google Sheets
        • A Guide to Excel
        • Quickstart to the Google Sheets
        • Python Excel Tutorial: The Definitive Guide
      • Working With Text Data
        • Quickstart
      • API Reference
      • Groupby
      • DateTime Methods
      • DataFrame
      • sort_values()
      • Pundit: Accessing Data in DataFrames
      • datatable
        • DataFrame: to_json()
        • pydatatable
      • Read and Write Files
      • Data Analysis with Pandas
      • Pandas and Python: Top 10
      • 10 minutes to pandas
      • Getting Started with Pandas in Python
    • Markdown
      • Create Responsive HTML Emails
      • Using Markup Languages with Hugo
    • AngularJS
      • Learn AngularJS
    • CSS
      • The CSS Handbook
      • Box Shadow
      • Image Center
      • The CSS Handbook
      • The CSS Handbook
      • Loading Animation
      • CSS Grid Layout
      • Background Image Size
      • Flexbox
  • Series
    • จาวาสคริปต์เบื้องต้น
      • 1: รู้จักกับจาวาสคริปต์
  • Articles
    • Visualization
      • Dash
        • Introducing Dash
    • Finance
      • PyPortfolioOpt
      • Best Libraries for Finance
      • Detection of price support
      • Portfolio Optimization
      • Python Packages For Finance
    • Django
      • เริ่มต้น Django RestFramework
    • General
      • Heroku คืออะไร
      • How to Crack Passwords
    • Notebook
      • IPython Documentation
      • Importing Notebooks
      • Google Colab for Data Analytics
      • Creating Interactive Dashboards
      • The Definitive Guide
      • A gallery of interesting Jupyter Notebooks
      • Advanced Jupyter Notebooks
      • Converting HTML to Notebook
    • Pandas
      • Pandas_UI
      • Pandas Style API
      • Difference Between two Dataframes
      • 19 Essential Snippets in Pandas
      • Time Series Analysis
      • Selecting Columns in a DataFrame
      • Cleaning Up Currency Data
      • Combine Multiple Excel Worksheets
      • Stylin’ with Pandas
      • Pythonic Data Cleaning
      • Make Excel Faster
      • Reading Excel (xlsx) Files
      • How to use iloc and loc for Indexing
      • The Easiest Data Cleaning Method
    • Python
      • pip install package
      • Automating your daily tasks
      • Convert Speech to Text
      • Tutorial, Project Ideas, and Tips
      • Image Handling and Processing
        • Image Processing Part I
        • Image Processing Part II
        • Image tutorial
        • Image Processing with Numpy
        • Converts PIL Image to Numpy Array
      • Convert Dictionary To JSON
      • JSON Dump
      • Speech-to-Text Model
      • Convert Text to Speech
      • Tips & Tricks
        • Fundamentals for Data Science
        • Best Python Code Examples
        • Top 50 Tips & Tricks
        • 11 Beginner Tips
        • 10 Tips & Tricks
      • Password hashing
      • psutil
      • Lambda Expressions
    • Web Scraping
      • Web Scraping using Python
      • Build a Web Scraper
      • Web Scraping for beginner
      • Beautiful Soup
      • Scrape Websites
      • Python Web Scraping
        • Web Scraping Part 1
        • Web Scraping Part 2
        • Web Scraping Part 3
        • Web Scraping Part 4
      • Web Scraper
    • Frontend
      • Book Online with GitBook
      • Progressive Web App คืออะไร
      • self-host a Hugo web app
  • Examples
    • Django
      • Build a Portfolio App
      • SchoolManagement
    • Flask
      • Flask Stock Visualizer
      • Flask by Example
      • Building Flask Apps
      • Flask 101
    • OpenCV
      • Build a Celebrity Look-Alike
      • Face Detection-OpenCV
    • Python
      • Make Game FLASH CARD
      • Sending emails using Google
      • ตรวจหาภาพซ้ำด้วย Perceptual hashing
        • Sending Emails in Python
      • Deck of Cards
      • Extract Wikipedia Data
      • Convert Python File to EXE
      • Business Machine Learning
      • python-business-analytics
      • Simple Blackjack Game
      • Python Turtle Clock
      • Countdown
      • 3D Animation : Moon Phases
      • Defragmentation Algorithm
      • PDF File
        • จัดการข้อความ และรูป จากไฟล์ PDF ด้วย PDFBox
      • Reading and Generating QR codes
      • Generating Password
        • generate one-time password (OTP)
        • Random Password Generator
        • Generating Strong Password
      • PyQt: Building Calculator
      • List Files in a Directory
      • [Project] qID – โปรแกรมแต่งรูปง่ายๆ เพื่อการอัพลงเว็บ
      • Python and Google Docs to Build Books
      • Tools for Record Linking
      • Create Responsive HTML Email
      • psutil()
      • Transfer Learning for Deep Learning
      • ดึงข้อมูลคุณภาพอากาศประเทศไทย
        • Image Classification
    • Web Scraper
      • Scrape Wikipedia Articles
        • Untitled
      • How Scrape Websites with Python 3
    • Finance
      • Algorithmic Trading for Beginners
      • Parse TradingView Stock
      • Creating a stock price database with MariaDB and python
      • Source Code
        • stocks-list
      • Visualizing with D3
      • Real Time Stock in Excel using Python
      • Create Stock Quote Module
      • The Magic Formula Lost Its Sparkle?
      • Stock Market Analysis
      • Stock Portfolio Analyses Part 1
      • Stock Portfolio Analyses Part 2
      • Build A Dashboard In Python
      • Stock Market Predictions with LSTM
      • Trading example
      • Algorithmic Trading Strategies
      • DOWNLOAD FUNDAMENTALS DATA
      • Algorithmic Trading
      • numfin
      • Financial Machine Learning
      • Algorithm To Predict Stock Direction
      • Interactive Brokers API Code
      • The (Artificially) Intelligent Investor
      • Create Auto-Updating Excel of Stock Market
      • Stock Market Predictions
      • Automate Your Stock Portfolio
      • create an analytics dashboard
      • Bitcoin Price Notifications
      • Portfolio Management
    • WebApp
      • CSS
        • The Best CSS Examples
      • JavaScript
        • Memory Game
      • School Clock
      • Frontend Tutorials & Example
      • Side Menu Bar with sub-menu
      • Create Simple CPU Monitor App
      • Vue.js building a converter app
      • jQuery
        • The Best jQuery Examples
      • Image Slideshow
      • Handle Timezones
      • Text to Speech with Javascript
      • Building Blog for Your Portfolio
      • Responsive Website Layout
      • Maths Homework Generator
  • Books
    • Finance
      • Python for Finance (O'Reilly)
    • Website
      • Hugo
        • Go Bootcamp
        • Hugo in Action.
          • About this MEAP
          • Welcome
          • 1. The JAM stack with Hugo
          • 2. Live in 30 minutes
          • 3. Using Markup for content
          • 4. Content Management with Hugo
          • 5. Custom Pages and Customized Content
          • 6. Structuring web pages
          • A Appendix A.
          • B Appendix B.
          • C Appendix C.
    • Python
      • ภาษาไพธอนเบื้องต้น
      • Python Cheatsheet
        • Python Cheatsheet
      • Beginning Python
      • IPython Cookbook
      • The Quick Python Book
        • Case study
        • Part 1. Starting out
          • 1. About Python
          • 2. Getting started
          • 3. The Quick Python overview
        • Part 2. The essentials
          • 14. Exceptions
          • 13. Reading and writing files
          • 12. Using the filesystem
          • 11. Python programs
          • 10. Modules and scoping rules
          • 9. Functions
          • 8. Control flow
          • 4. The absolute basics
          • 5. Lists, tuples, and sets
          • 6. Strings
          • 7. Dictionaries
        • Part 3. Advanced language features
          • 19. Using Python libraries
          • 18. Packages
          • 17. Data types as objects
          • 16. Regular expressions
          • 15. Classes and OOP
        • Part 4. Working with data
          • Appendix B. Exercise answers
          • Appendix A. Python’s documentation
          • 24. Exploring data
          • 23. Saving data
          • 20. Basic file wrangling
          • 21. Processing data files
          • 22. Data over the network
      • The Hitchhiker’s Guide to Python
      • A Whirlwind Tour of Python
        • 9. Defining Functions
      • Automate the Boring Stuff
        • 4. Lists
        • 5. Dictionaries
        • 12. Web Scraping
        • 13. Excel
        • 14. Google Sheets
        • 15. PDF and Word
        • 16. CSV and JSON
    • IPython
    • Pandas
      • จัดการข้อมูลด้วย pandas เบื้องต้น
      • Pandas Tutorial
  • Link Center
    • Temp
  • เทควันโด
    • รวมเทคนิค
    • Help and Documentation
  • Image
    • Logistics
Powered by GitBook
On this page
  • 1. Importing a CSV File
  • 2. Exploring Data in a DataFrame
  • 3. Adding a New Column to a DataFrame
  • 4. Select a Specific “Cell” Value
  • 5.Filtering DataFrames with Conditional Logic
  • 6. Sorting a DataFrame by a Certain Column
  • 7. Apply a Function to Every Row in a Column
  • 8. Add a New Column with Conditional Logic
  • 9. Finding the Mean or Standard Deviation of Multiple Columns or Rows
  • 10. Converting a DataFrame to a Numpy Array
  • 11. Combining DataFrames with Concatenation
  • 12. Combining DataFrames based on an Index Key
  • 13. Converting Dates to their own Day, Week, Month, Year Columns
  • 14. Finding NaNs in a DataFrame
  • 15. Filling NaNs or Missing Data
  • 16. Extracting Features by Grouping Columns
  • 17.Creating Bins
  • 18. Creating a new Column by Looping
  • 19. Loading Massive Datasets in Smaller Chunks

Was this helpful?

  1. Articles
  2. Pandas

19 Essential Snippets in Pandas

Aug 26, 2016

PreviousDifference Between two DataframesNextTime Series Analysis

Last updated 5 years ago

Was this helpful?

After playing around with for about a month, I’ve compiled a pretty large list of useful snippets that I find myself reusing over and over again. These tips can save you some time sifting through the comprehensive Pandas docs.

For this article, we are starting with a DataFrame filled with Pizza orders. If you’re brand new to Pandas, here’s a few translations and key terms.

  • DataFrame - Indexed rows and columns of data, like a spreadsheet or database table.

  • Series = Single column of data.

  • Axis - 0 == Rows, 1 == Columns

  • Shape - (number_of_rows, number_of_columns) in a DataFrame

1. Importing a CSV File

There are a ton of options for the read_csv function that can simplify preprocessing of data. Nobody want to waste time cleaning data, so see if you can knock it out when import the initial file.

df = pd.read_csv('pizza.csv')

Need to parse dates? Just pass in the corresponding column name(s).

df = pd.read_csv('pizza.csv', parse_dates=['dates'])

Only need a few specific columns?

df = pd.read_csv('pizza.csv', usecols=['foo', 'bar'])

2. Exploring Data in a DataFrame

The first thing you probably want to do is see what the data looks like. Here a few ways to check out Pandas data.

df.head()       # first five rows
df.tail()       # last five rows
df.sample(5)    # random sample of rows
df.shape        # number of rows/columns in a tuple
df.describe()   # calculates measures of central tendency
df.info()       # memory footprint and datatypes

Here’s the head of the pizza DataFrame…

order_number

date

size

topping

price

discount

coupon

0

PZZA0001

08/21/16

Small

Anchovies

12.99

3.5

Yes

1

PZZA0000

09/26/16

Large

Pepperoni

14.50

0.0

No

2

PZZA0001

09/27/16

Extra Large

Bell Pepper

19.99

0.0

No

3

PZZA0002

09/28/16

Extra Large

Olives

20.99

5.0

Yes

4

PZZA0003

09/29/16

Extra Large

Pepperoni

21.99

0.0

No

3. Adding a New Column to a DataFrame

The quick and easy way is to just define a new column on the dataframe. This will give us column with the number 23 on every row. Usually, you will be setting the new column with an array or Series that matches the number of rows in the data.

df['new_column'] = 23

Need to build a new column based on values from other columns?

full_price = (df.price + df.discount)
df['original_price'] = full_price

Need the column in a certain order? The first argument is the position of the column. This will put the column at the begining of the DataFrame.

df.insert(0, 'original_price', full_price)

4. Select a Specific “Cell” Value

By cell I mean a single row/column intersection, like those in an Excel spreadsheet. You would expect this to be simple, but the syntax is not very obvious. There are three methods in Pandas that almost do the same thing, .loc, iloc, .ix – adding to the confusion for newcomers.

Typically, I use .ix because it allows a mix of integers and strings. Enter the index of the row first, then the column.

df.ix[2, 'topping']

You can also select the column first with dot notation, then the row index, which looks a little cleaner.

df.topping.ix[2]

Either method will return the value of the cell.

>>> 'Bell Pepper'

5.Filtering DataFrames with Conditional Logic

Let’s the we need to analyze orders that have pineapple in the topping column.

filtered_data = df[df.topping == 'pineapple']

Or that meet a certain price threshold

filtered_data = df[df.price > 11.99 ]

How about both at the same time? Just add the conditions to tuples and connect them with a bitwise operator.

filtered_data = df[(df.price > 11.99) & (df.topping == 'Pineapple')]

Now we have all the pizzas with a Pineapple topping priced over 11.99.

order_number

date

size

topping

price

discount

coupon

6

PZZA0006

10/01/16

Medium

Pineapple

17.50

0.0

No

9

PZZA0009

10/04/16

Medium

Pineapple

12.99

2.0

Yes

6. Sorting a DataFrame by a Certain Column

Pretty self-explanatory, but very useful.

df.sort_values('price', axis=0, ascending=False)

7. Apply a Function to Every Row in a Column

Anonymous lambda functions in Python are useful for these tasks. Let’s say we need to calculate taxes for every row in the DataFrame with a custom function. The pandas apply method allows us to pass a function that will run on every value in a column. In this example, we extract a new taxes feature by running a custom function on the price data.

def calculate_taxes(price):
    taxes = price * 0.12
    return taxes

df['taxes'] = df.price.apply(calculate_taxes)

order_number

price

taxes

0

PZZA0000

12.99

1.5588

1

PZZA0001

14.50

1.7400

2

PZZA0002

19.99

2.3988

3

PZZA0003

20.99

2.5188

4

PZZA0004

21.99

2.6388

8. Add a New Column with Conditional Logic

The where function in numpy is useful when extracting features with conditional logic. Let’s imagine the pizza parlor is only profitable on sales above $15.00. We create a new column based on this insight like so:

df['profitable'] = np.where(df['price']>=15.00, True, False)

9. Finding the Mean or Standard Deviation of Multiple Columns or Rows

If you have a DataFrame with the same type of data in every column, possibly a time series with financial data, you may need to find he mean horizontally.

df['mean'] = df.mean(axis=1)

or to find the standard deviation vertically

df.std(axis=0)

10. Converting a DataFrame to a Numpy Array

Converting the the values in a DataFrame to an array is simple

df.values

If you want to preserve the table presentation

df.as_matrix

11. Combining DataFrames with Concatenation

You can concatenate rows or columns together, the only requirement is that the shape is the same on corresponding axis. To concat rows vertically:

pd.concat([df_1, df_2], axis=0)

Or to concat columns horizontally:

pd.concat([df_1, df_2], axis=1)

12. Combining DataFrames based on an Index Key

Merging in Pandas works just like SQL. If you you have two DataFrames that share a key, perhaps a pizza ‘order_id’, you can perform inner, outer, left, right joins just like you would in SQL.

merged_df = df_1.merge(df_2, how='left', on='order_id')

13. Converting Dates to their own Day, Week, Month, Year Columns

First, make sure the data is in datetime format. Then use dt method to extract the data you need.

date = pd.to_datetime(df.date)
df['weekday'] = date.dt.weekday
df['year'] = date.dt.year

14. Finding NaNs in a DataFrame

Count the total number of NaNs present:

df.isnull().sum().sum()

List the NaN count for each column:

df.isnull().sum()

15. Filling NaNs or Missing Data

Most machine learning algorithms do not like NaN values, so you’ll probably need to convert them. If the topping column is missing some values, we can fill them a default value.

df.topping = df.topping.fillna('Cheese')

or we can drop any row missing data across the entire DataFrame:

df = df.dropna(axis=0)

16. Extracting Features by Grouping Columns

Grouping columns is a great way to extract features from data. This is especially useful when you have data that can be counted or quantified in some way. For example, you might have group pizzas by topping, then calculate the mean for price in each group.

df.groupby('topping')['discount'].apply(lambda x: np.mean(x))

or maybe you want to see the count of a certain value

df.groupby('topping')['discount'].apply(lambda x: x.count())
topping
Anchovies      3
Bell Pepper    1
Cheese         2
Olives         1
Pepperoni      3
Pineapple      2
Veggie         1
Name: discount, dtype: int64

17.Creating Bins

Let’s say we want to create 3 separate bins for different price ranges. This is especially useful for simplifying noisy data.

bins = [0, 5, 15, 30]
names = ['Cheap', 'Normal', 'Expensive']

df['price_point'] = pd.cut(df.price, bins, labels=names)

order_number

price

price_point

0

PZZA0000

12.99

Normal

1

PZZA0001

14.50

Normal

2

PZZA0002

19.99

Expensive

3

PZZA0003

20.99

Expensive

4

PZZA0004

21.99

Expensive

18. Creating a new Column by Looping

Let’s say we want to categorize toppings by ‘vegetable’ or ‘meat’. Dealing with nominal values like these can be handled with a for loop. (Note: you can also use the apply function described earlier to perform this task. )

topping_type = []

for row in df.topping:
    if row in ['pepperoni', 'chicken', 'anchovies']:
        topping_type.append('meat')
    else:
        topping_type.append('vegetable')

df['topping_type'] = topping_type

19. Loading Massive Datasets in Smaller Chunks

Sometimes you might have a massive file that will max out your RAM and crash your system. In that case, you might need to analyze the file in smaller chunks.

chunksize = 500
chunks = []
for chunk in pd.read_csv('pizza.csv', chunksize=chunksize):
    # Do stuff...
    chunks.append(chunk)

df = pd.concat(chunks, axis=0)

Reference :

https://jeffdelaney.me
Pandas Python Data Analysis Library