📉
Tutorials
  • Computer History
  • Function
    • Finance
      • Calculate
    • Manage Data
    • Date&Time
    • Strings and Character
  • Snippets
    • Web Application
      • Hugo
      • JavaScript
        • Stopwatch using JavaScript?
    • Note
    • Start Project
      • GitHub
      • GitLab
    • Python Programming
      • Strings and Character Data
      • List
      • Dictionaries
    • Data Science
      • Setting Option
      • Get Data
  • Link Center
    • Next Articles
    • Google
    • Excel VBA
    • Python
      • Notebook
    • WebApp
      • Vue.js
    • Finance
    • Project
      • Kids
        • Scratch
      • Finance
        • Plotly.js
        • Portfolio
      • Mini Lab
        • Systems Administration
        • Auto Adjust Image
      • Sending Emails
      • ECS
        • Knowledge Base
        • ระบบผู้เชี่ยวชาญ (Expert System)
        • Check product
        • Compare two SQL databases
      • e-Library
        • Knowledge base
        • การจัดหมวดหมู่ห้องสมุด
        • Temp
      • AppSheet
        • บัญชีรายรับรายจ่าย
      • Weather App
      • COVID-19
  • Tutorials
    • Data Science
      • Data Science IPython notebooks
    • UX & UI
      • 7 กฎการออกแบบ UI
    • Web Scraping
      • Scrape Wikipedia Articles
      • Quick Start
    • GUI
      • pysimple
        • Create a GUI
      • Tkinter
        • Python Tkinter Tutorial
      • PyQt
        • PyQt Tutorial
    • MachineLearning
      • การพัฒนา Chat Bot
      • AI ผู้ช่วยใหม่ในการทำ Customer Segmentation
      • Customer Segmentation
      • ตัดคำภาษาไทย ด้วย PyThaiNLP API
    • Excel & VBA
      • INDEX กับ MATCH
      • รวมสูตร Excel ปี 2020
      • How to Write Code in a Spreadsheet
    • Visualization
      • Bokeh
        • Part I: Getting Started
        • Data visualization
        • Plotting a Line Graph
        • Panel Document
        • Interactive Data Visualization
    • VueJS
      • VueJS - Quick Guide
    • Django
      • Customize the Django Admin
      • พัฒนาเว็บด้วย Django
    • Git
      • วิธีสร้าง SSH Key
      • Git คืออะไร
      • เริ่มต้นใช้งาน Git
      • การใช้งาน Git และ Github
      • รวม 10 คำสั่ง Git
      • GIT Push and Pull
    • Finance
      • Stock Analysis using Pandas (Series)
      • Building Investment AI for fintech
      • Resampling Time Series
      • Python for Finance (Series)
      • Stock Data Analysis (Second Edition)
      • Get Stock Data Using Python
      • Stock Price Trend Analysis
      • Calculate Stock Returns
      • Quantitative Trading
      • Backtrader for Backtesting
      • Binance Python API
      • Pine Script (TradingView)
      • Stocks Analysis with Pandas and Scikit-Learn
      • Yahoo Finance API
      • Sentiment Analysis
      • yfinance Library
      • Stock Data Analysis
      • YAHOO_FIN
      • Algorithmic Trading
    • JavaScript
      • Split a number
      • Callback Function
      • The Best JavaScript Examples
      • File and FileReader
      • JavaScript Tutorial
      • Build Reusable HTML Components
      • Developing JavaScript components
      • JavaScript - Quick Guide
      • JavaScript Style Guide()
      • Beginner's Handbook
      • Date Now
    • Frontend
      • HTML
        • File Path
      • Static Site Generators.
        • Creating a New Theme
    • Flask
      • Flask - Quick Guide
      • Flask Dashboards
        • Black Dashboard
        • Light Blue
        • Flask Dashboard Argon
      • Create Flask App
        • Creating First Application
        • Rendering Pages Using Jinja
      • Jinja Templates
        • Primer on Jinja Templating
        • Jinja Template Document
      • Learning Flask
        • Ep.1 Your first Flask app
        • Ep.2 Flask application structure
        • Ep.3 Serving HTML files
        • Ep.4 Serving static files
        • Ep.5 Jinja template inheritance
        • Ep.6 Jinja template design
        • Ep.7 Working with forms in Flask
        • Ep.8 Generating dynamic URLs in Flask
        • Ep.9 Working with JSON data
        • Ep.23 Deploying Flask to a VM
        • Ep.24 Flask and Docker
        • Ep. 25: uWSGI Introduction
        • Ep. 26 Flask before and after request
        • Ep. 27 uWSGI Decorators
        • Ep. 28 uWSGI Decorators
        • Ep. 29 Flask MethodView
        • Ep. 30 Application factory pattern
      • The Flask Mega-Tutorial
        • Chapter 2: Templates
      • Building Flask Apps
      • Practical Flask tutorial series
      • Compiling SCSS to CSS
      • Flask application structure
    • Database
      • READING FROM DATABASES
      • SQLite
        • Data Management
        • Fast subsets of large datasets
      • Pickle Module
        • How to Persist Objects
      • Python SQL Libraries
        • Create Python apps using SQL Server
    • Python
      • Python vs JavaScript
      • Python Pillow – Adjust Image
      • Python Library for Google Search
      • Python 3 - Quick Guide
      • Regular Expressions
        • Python Regular Expressions
        • Regular Expression (RegEx)
        • Validate ZIP Codes
        • Regular Expression Tutorial
      • Python Turtle
      • Python Beginner's Handbook
      • From Beginner to Pro
      • Standard Library
      • Datetime Tutorial
        • Manipulate Times, Dates, and Time Spans
      • Work With a PDF
      • geeksforgeeks.org
        • Python Tutorial
      • Class
      • Modules
        • Modules List
        • pickle Module
      • Working With Files
        • Open, Read, Append, and Other File Handling
        • File Manipulation
        • Reading & Writing to text files
      • Virtual Environments
        • Virtual Environments made easy
        • Virtual Environmen
        • A Primer
        • for Beginners
      • Functions
        • Function Guide
        • Inner Functions
      • Learning Python
        • Pt. 4 Python Strings
        • Pt. 3 Python Variables
      • Zip Function
      • Iterators
      • Try and Except
        • Exceptions: Introduction
        • Exceptions Handling
        • try and excep
        • Errors and Exceptions
        • Errors & Exceptions
      • Control Flow
      • Lambda Functions
        • Lambda Expression คืออะไร
        • map() Function
      • Date and Time
        • Python datetime()
        • Get Current Date and Time
        • datetime in Python
      • Awesome Python
      • Dictionary
        • Dictionary Comprehension
        • ALL ABOUT DICTIONARIES
        • DefaultDict Type for Handling Missing Keys
        • The Definitive Guide
        • Why Functions Modify Lists and Dictionaries
      • Python Structures
      • Variable & Data Types
      • List
        • Lists Explained
        • List Comprehensions
          • Python List Comprehension
          • List Comprehensions in 5-minutes
          • List Comprehension
        • Python List
      • String
        • Strings and Character Data
        • Splitting, Concatenating, and Joining Strings
      • String Formatting
        • Improved String Formatting Syntax
        • String Formatting Best Practices
        • Remove Space
        • Add Spaces
      • Important basic syntax
      • List all the packages
      • comment
    • Pandas
      • Tutorial (GeeksforGeeks)
      • 10 minutes to pandas
      • Options and settings
      • เริ่มต้น Set Up Kaggle.com
      • Pandas - Quick Guide
      • Cookbook
      • NumPy
        • NumPy Package for Scientific
      • IO tools (text, CSV, …)
      • pandas.concat
      • Excel & Google Sheets
        • A Guide to Excel
        • Quickstart to the Google Sheets
        • Python Excel Tutorial: The Definitive Guide
      • Working With Text Data
        • Quickstart
      • API Reference
      • Groupby
      • DateTime Methods
      • DataFrame
      • sort_values()
      • Pundit: Accessing Data in DataFrames
      • datatable
        • DataFrame: to_json()
        • pydatatable
      • Read and Write Files
      • Data Analysis with Pandas
      • Pandas and Python: Top 10
      • 10 minutes to pandas
      • Getting Started with Pandas in Python
    • Markdown
      • Create Responsive HTML Emails
      • Using Markup Languages with Hugo
    • AngularJS
      • Learn AngularJS
    • CSS
      • The CSS Handbook
      • Box Shadow
      • Image Center
      • The CSS Handbook
      • The CSS Handbook
      • Loading Animation
      • CSS Grid Layout
      • Background Image Size
      • Flexbox
  • Series
    • จาวาสคริปต์เบื้องต้น
      • 1: รู้จักกับจาวาสคริปต์
  • Articles
    • Visualization
      • Dash
        • Introducing Dash
    • Finance
      • PyPortfolioOpt
      • Best Libraries for Finance
      • Detection of price support
      • Portfolio Optimization
      • Python Packages For Finance
    • Django
      • เริ่มต้น Django RestFramework
    • General
      • Heroku คืออะไร
      • How to Crack Passwords
    • Notebook
      • IPython Documentation
      • Importing Notebooks
      • Google Colab for Data Analytics
      • Creating Interactive Dashboards
      • The Definitive Guide
      • A gallery of interesting Jupyter Notebooks
      • Advanced Jupyter Notebooks
      • Converting HTML to Notebook
    • Pandas
      • Pandas_UI
      • Pandas Style API
      • Difference Between two Dataframes
      • 19 Essential Snippets in Pandas
      • Time Series Analysis
      • Selecting Columns in a DataFrame
      • Cleaning Up Currency Data
      • Combine Multiple Excel Worksheets
      • Stylin’ with Pandas
      • Pythonic Data Cleaning
      • Make Excel Faster
      • Reading Excel (xlsx) Files
      • How to use iloc and loc for Indexing
      • The Easiest Data Cleaning Method
    • Python
      • pip install package
      • Automating your daily tasks
      • Convert Speech to Text
      • Tutorial, Project Ideas, and Tips
      • Image Handling and Processing
        • Image Processing Part I
        • Image Processing Part II
        • Image tutorial
        • Image Processing with Numpy
        • Converts PIL Image to Numpy Array
      • Convert Dictionary To JSON
      • JSON Dump
      • Speech-to-Text Model
      • Convert Text to Speech
      • Tips & Tricks
        • Fundamentals for Data Science
        • Best Python Code Examples
        • Top 50 Tips & Tricks
        • 11 Beginner Tips
        • 10 Tips & Tricks
      • Password hashing
      • psutil
      • Lambda Expressions
    • Web Scraping
      • Web Scraping using Python
      • Build a Web Scraper
      • Web Scraping for beginner
      • Beautiful Soup
      • Scrape Websites
      • Python Web Scraping
        • Web Scraping Part 1
        • Web Scraping Part 2
        • Web Scraping Part 3
        • Web Scraping Part 4
      • Web Scraper
    • Frontend
      • Book Online with GitBook
      • Progressive Web App คืออะไร
      • self-host a Hugo web app
  • Examples
    • Django
      • Build a Portfolio App
      • SchoolManagement
    • Flask
      • Flask Stock Visualizer
      • Flask by Example
      • Building Flask Apps
      • Flask 101
    • OpenCV
      • Build a Celebrity Look-Alike
      • Face Detection-OpenCV
    • Python
      • Make Game FLASH CARD
      • Sending emails using Google
      • ตรวจหาภาพซ้ำด้วย Perceptual hashing
        • Sending Emails in Python
      • Deck of Cards
      • Extract Wikipedia Data
      • Convert Python File to EXE
      • Business Machine Learning
      • python-business-analytics
      • Simple Blackjack Game
      • Python Turtle Clock
      • Countdown
      • 3D Animation : Moon Phases
      • Defragmentation Algorithm
      • PDF File
        • จัดการข้อความ และรูป จากไฟล์ PDF ด้วย PDFBox
      • Reading and Generating QR codes
      • Generating Password
        • generate one-time password (OTP)
        • Random Password Generator
        • Generating Strong Password
      • PyQt: Building Calculator
      • List Files in a Directory
      • [Project] qID – โปรแกรมแต่งรูปง่ายๆ เพื่อการอัพลงเว็บ
      • Python and Google Docs to Build Books
      • Tools for Record Linking
      • Create Responsive HTML Email
      • psutil()
      • Transfer Learning for Deep Learning
      • ดึงข้อมูลคุณภาพอากาศประเทศไทย
        • Image Classification
    • Web Scraper
      • Scrape Wikipedia Articles
        • Untitled
      • How Scrape Websites with Python 3
    • Finance
      • Algorithmic Trading for Beginners
      • Parse TradingView Stock
      • Creating a stock price database with MariaDB and python
      • Source Code
        • stocks-list
      • Visualizing with D3
      • Real Time Stock in Excel using Python
      • Create Stock Quote Module
      • The Magic Formula Lost Its Sparkle?
      • Stock Market Analysis
      • Stock Portfolio Analyses Part 1
      • Stock Portfolio Analyses Part 2
      • Build A Dashboard In Python
      • Stock Market Predictions with LSTM
      • Trading example
      • Algorithmic Trading Strategies
      • DOWNLOAD FUNDAMENTALS DATA
      • Algorithmic Trading
      • numfin
      • Financial Machine Learning
      • Algorithm To Predict Stock Direction
      • Interactive Brokers API Code
      • The (Artificially) Intelligent Investor
      • Create Auto-Updating Excel of Stock Market
      • Stock Market Predictions
      • Automate Your Stock Portfolio
      • create an analytics dashboard
      • Bitcoin Price Notifications
      • Portfolio Management
    • WebApp
      • CSS
        • The Best CSS Examples
      • JavaScript
        • Memory Game
      • School Clock
      • Frontend Tutorials & Example
      • Side Menu Bar with sub-menu
      • Create Simple CPU Monitor App
      • Vue.js building a converter app
      • jQuery
        • The Best jQuery Examples
      • Image Slideshow
      • Handle Timezones
      • Text to Speech with Javascript
      • Building Blog for Your Portfolio
      • Responsive Website Layout
      • Maths Homework Generator
  • Books
    • Finance
      • Python for Finance (O'Reilly)
    • Website
      • Hugo
        • Go Bootcamp
        • Hugo in Action.
          • About this MEAP
          • Welcome
          • 1. The JAM stack with Hugo
          • 2. Live in 30 minutes
          • 3. Using Markup for content
          • 4. Content Management with Hugo
          • 5. Custom Pages and Customized Content
          • 6. Structuring web pages
          • A Appendix A.
          • B Appendix B.
          • C Appendix C.
    • Python
      • ภาษาไพธอนเบื้องต้น
      • Python Cheatsheet
        • Python Cheatsheet
      • Beginning Python
      • IPython Cookbook
      • The Quick Python Book
        • Case study
        • Part 1. Starting out
          • 1. About Python
          • 2. Getting started
          • 3. The Quick Python overview
        • Part 2. The essentials
          • 14. Exceptions
          • 13. Reading and writing files
          • 12. Using the filesystem
          • 11. Python programs
          • 10. Modules and scoping rules
          • 9. Functions
          • 8. Control flow
          • 4. The absolute basics
          • 5. Lists, tuples, and sets
          • 6. Strings
          • 7. Dictionaries
        • Part 3. Advanced language features
          • 19. Using Python libraries
          • 18. Packages
          • 17. Data types as objects
          • 16. Regular expressions
          • 15. Classes and OOP
        • Part 4. Working with data
          • Appendix B. Exercise answers
          • Appendix A. Python’s documentation
          • 24. Exploring data
          • 23. Saving data
          • 20. Basic file wrangling
          • 21. Processing data files
          • 22. Data over the network
      • The Hitchhiker’s Guide to Python
      • A Whirlwind Tour of Python
        • 9. Defining Functions
      • Automate the Boring Stuff
        • 4. Lists
        • 5. Dictionaries
        • 12. Web Scraping
        • 13. Excel
        • 14. Google Sheets
        • 15. PDF and Word
        • 16. CSV and JSON
    • IPython
    • Pandas
      • จัดการข้อมูลด้วย pandas เบื้องต้น
      • Pandas Tutorial
  • Link Center
    • Temp
  • เทควันโด
    • รวมเทคนิค
    • Help and Documentation
  • Image
    • Logistics
Powered by GitBook
On this page
  • HOW TO DOWNLOAD FUNDAMENTALS DATA WITH PYTHON
  • How can we download fundamentals data with Python?
  • Getting started
  • How to get P/E (Price-to-Earnings) Ratios
  • How to get P/S (Price-to-Sales) Ratios
  • Getting fundamentals stats for many stocks at once
  • Getting additional stats from multiple stocks
  • How to get balance sheets
  • How to get balance sheets for many stocks at once
  • How to get income statements
  • Getting the income statement from each Dow stock
  • How to extract cash flow statements
  • Conclusion

Was this helpful?

  1. Examples
  2. Finance

DOWNLOAD FUNDAMENTALS DATA

05 May 2020

PreviousAlgorithmic Trading StrategiesNextAlgorithmic Trading

Last updated 4 years ago

Was this helpful?

HOW TO DOWNLOAD FUNDAMENTALS DATA WITH PYTHON

How can we download fundamentals data with Python?

Getting started

Now, let’s import the stock_info module from yahoo_fin. This will provide us with the functionality we need to scrape fundamentals data from Yahoo Finance. We’ll also import the pandas package as we’ll be using that later to work with data frames.


import yahoo_fin.stock_info as si
import pandas as pd

Next, we’ll dive into getting common company metrics, starting with P/E ratios.

How to get P/E (Price-to-Earnings) Ratios


quote = si.get_quote_table("aapl")

Next, let’s pull the P/E ratio from the dictionary that is returned.


quote["PE Ratio (TTM)"] # 22.71

val = si.get_stats_valuation("aapl")

val = val.iloc[:,:2]

val.columns = ["Attribute", "Recent"]

Next, let’s extract the P/E ratio.


float(val[val.Attribute.str.contains("Trailing P/E")].iloc[0,1])

How to get P/S (Price-to-Sales) Ratios

Another popular metric is the P/S ratio. We can get the P/S ratio, along with several other other metrics, using the same get_stats_valuation method. Let’s use the object we pulled above, currently stored as val.

Then, we can get the Price/Sales ratio like below.


float(val[val.Attribute.str.contains("Price/Sales")].iloc[0,1])

Getting fundamentals stats for many stocks at once

Now, let’s get the Price-to-Earnings and Price-to-Sales ratios for each stock in the Dow. We could also do this for a custom list of tickers as well.


# get list of Dow tickers
dow_list = si.tickers_dow()


# Get data in the current column for each stock's valuation table
dow_stats = {}
for ticker in dow_list:
    temp = si.get_stats_valuation(ticker)
    temp = temp.iloc[:,:2]
    temp.columns = ["Attribute", "Recent"]

    dow_stats[ticker] = temp


# combine all the stats valuation tables into a single data frame
combined_stats = pd.concat(dow_stats)
combined_stats = combined_stats.reset_index()

del combined_stats["level_1"]

# update column names
combined_stats.columns = ["Ticker", "Attribute", "Recent"]

Price-to-Earnings ratio for each Dow stock

The P/E ratio for each stock can be obtained in a single line:


# get P/E ratio for each stock
combined_stats[combined_stats.Attribute.str.contains("Trailing P/E")

Getting the Price-to-Sales ratio for each Dow stock

After the above code, we can get the Price / Sales ratios for each stock like below.


# get P/S ratio for each stock
combined_stats[combined_stats.Attribute.str.contains("Price/Sales")

How to get Price / Book ratio

Similarly, we can get the Price-to-Book ratio for every stock in our list below.


# get Price-to-Book ratio for each stock
combined_stats[combined_stats.Attribute.str.contains("Price/Book")

How to get PEG ratio

Next, let’s get the PEG (Price / Earnings-to-Growth ratio).


# get PEG ratio for each stock
combined_stats[combined_stats.Attribute.str.contains("PEG")

How to get forward P/E ratios

We can get forward P/E ratios like this:


# get forward P/E ratio for each stock
combined_stats[combined_stats.Attribute.str.contains("Forward P/E")]

Getting additional stats from multiple stocks

Similar to above, we can get this information for each stock in the Dow.


dow_extra_stats = {}
for ticker in tqdm(dow_list):
    dow_extra_stats[ticker] = si.get_stats(ticker)
    

combined_extra_stats = pd.concat(dow_extra_stats)

combined_extra_stats = combined_extra_stats.reset_index()

del combined_extra_stats["level_1"]

combined_extra_stats.columns = ["ticker", "Attribute", "Value"]

How to get Return on Equity (ROE)

Using the result data frame, combined_extra_stats, let’s get Return on Equity for each stock in our list.


combined_extra_stats[combined_extra_stats.Attribute.str.contains("Return on Equity")]

How to get Return on Assets

A simple tweak gives us Return on Assets for each stock.


combined_extra_stats[combined_extra_stats.Attribute.str.contains("Return on Assets")]

How to get profit margin

To get profit margin, we just need to adjust our filter like below.


combined_extra_stats[combined_extra_stats.Attribute.str.contains("Profit Margin")]

How to get balance sheets

We can extract balance sheets from Yahoo Finance using the get_balance_sheet method. Using the data frame that is returned, we can get several attributes about the stock’s financials, including total cash on hand, assets, liabilities, stockholders’ equity, etc.


sheet = si.get_balance_sheet("aapl")

How to get total cash on hand

We can see the “Total Cash” row in the balance sheet by filtering for “cash”. This will give us the total cash value for the last several years.


sheet.loc["cash"]

How to get stockholders’ equity

Next, we can also get Total Stockholders’ Equity.


sheet.loc["totalStockholderEquity"]

How to get a company’s total assets

Now, let’s get Total Assets.


sheet.loc["totalAssets"]

How to get balance sheets for many stocks at once

Like with the company statistics tables we pulled earlier, we can also download the balance sheet for all the stocks in the Dow (or again, a custom list of your choice).


balance_sheets = {}
for ticker in dow_list:
    balance_sheets[ticker] = si.get_balance_sheet(ticker)
    

From here, we could then look at values from the balance sheets across multiple companies at once. For example, the code below combines the balance sheets from each stock in the Dow. Since each individual balance sheet may have different column headers (from different dates), we’ll just get the most recent column of data from the balance sheet for each stock.


recent_sheets = {ticker : sheet.iloc[:,:1] for ticker,sheet in balance_sheets.items()}

for ticker in recent_sheets.keys():
    recent_sheets[ticker].columns = ["Recent"]

# combine all balance sheets together
combined_sheets = pd.concat(recent_sheets)

# reset index to pull in ticker
combined_sheets = combined_sheets.reset_index()

# update column names
combined_sheets.columns = ["Ticker", "Breakdown", "Recent"]

Now we have a data frame containing the balance sheet information for each stock in our list. For example, we can look at the Total Assets for each Dow stock like this:


combined_sheets[combined_sheets.Breakdown == "totalAssets"]

How to get income statements


si.get_income_statement("aapl")

Using the income statement, we can examine specific values, such as total revenue, gross profit, total expenses, etc.

Looking at a company’s total revenue

To get the total revenue, we just need to apply a filter like previously.


income.loc["totalRevenue"]

Getting a company’s gross profit

Similarly, we can get the gross profit:


income.loc["grossProfit"]

Getting the income statement from each Dow stock

Next, let’s pull the income statement for each Dow stock.


income_statements = {}
for ticker in dow_list:
    income_statements[ticker] = si.get_income_statement(ticker)

Now, we can look at metrics in the income statement across multiple companies at once. First, we just need to combine the income statements together, similar to how we combined the balance sheets above.


recent_income_statements = {ticker : sheet.iloc[:,:1] for ticker,sheet in income_statements.items()}

for ticker in recent_income_statements.keys():
    recent_income_statements[ticker].columns = ["Recent"]

combined_income = pd.concat(recent_income_statements)

combined_income = combined_income.reset_index()

combined_income.columns = ["Ticker", "Breakdown", "Recent"]

Now that we have a combined view of the income statements across stocks, we can examine specific values in the income statements, such as Total Revenue, for example.


combined_income[combined_income.Breakdown == "totalRevenue"]

How to extract cash flow statements

In this section, we’ll extract cash flow statements. We can do that using the get_cash_flow method.


flow = si.get_cash_flow("aapl")

Here’s the first few rows of the cash flow statement:

Now let’s get the cash flow statements of each Dow stock.


cash_flows = {}
for ticker in dow_list:
    cash_flows[ticker] = si.get_cash_flow(ticker)

Again, we combine the datasets above, using similar code as before.


recent_cash_flows = {ticker : flow.iloc[:,:1] for ticker,flow in cash_flows.items()}


for ticker in recent_cash_flows.keys():
    recent_cash_flows[ticker].columns = ["Recent"]


combined_cash_flows = pd.concat(recent_cash_flows)

combined_cash_flows = combined_cash_flows.reset_index()

combined_cash_flows.columns = ["Ticker", "Breakdown", "Recent"]

Now, we can examine information in the cash flow statements across all the stocks in our list.

Getting dividends paid across companies

One example to look at in a cash flow statement is the amount of dividends paid, which we can see across the companies in our list by using the filter below.


combined_cash_flows[combined_cash_flows.Breakdown == "dividendsPaid"]

Getting stock issuance information

Here’s another example – this time, we’ll look at debt-related numbers across the cash flow statements.


combined_cash_flows[combined_cash_flows.Breakdown == "issuanceOfStock"]

Conclusion

In this post we will explore how to download fundamentals data with Python. We’ll be extracting fundamentals data from using the package. For more on yahoo_fin, including installation instructions, .

There’s a couple ways to get the current P/E ratio for a company. First, we can use the get_quote_table method, which will extract the data found on the summary page of a stock ().

python get P/E ratios

A company’s P/E ratio can also be extracted from the get_stats_valuation method. Running this method returns a data frame of the “Valuation Measures” on the .

In addition to the “Valuation Measures” table on the stats tab, we can also scrape the remaining data points on the webpage using the get_stats method. Calling this method lets us extract metrics like Return on Equity (ROE), Return on Assets, profit margin, etc. .

python download balance sheets from yahoo finance

Next, let’s examine income statements. Income statements can be downloaded from Yahoo Finance using the get_income_statement method. See an example income statement .

python download income statements
python download cash flow statement from yahoo finance

That’s it for this post! Learn more about web scraping by that I co-created with 365 Data Science! You’ll learn all about scraping data from different sources, downloading files programmatically, working with APIs, scraping JavaScript-rendered content, and more!

Reference :

Yahoo Finance
yahoo_fin
check out its full documentation here
see here
statistics tab for a stock
Click here to see the webpage for Apple
here
checking out this online course on Udemy
Check it out here!
http://theautomatic.net/2020/05/05/how-to-download-fundamentals-data-with-python/