📉
Tutorials
  • Computer History
  • Function
    • Finance
      • Calculate
    • Manage Data
    • Date&Time
    • Strings and Character
  • Snippets
    • Web Application
      • Hugo
      • JavaScript
        • Stopwatch using JavaScript?
    • Note
    • Start Project
      • GitHub
      • GitLab
    • Python Programming
      • Strings and Character Data
      • List
      • Dictionaries
    • Data Science
      • Setting Option
      • Get Data
  • Link Center
    • Next Articles
    • Google
    • Excel VBA
    • Python
      • Notebook
    • WebApp
      • Vue.js
    • Finance
    • Project
      • Kids
        • Scratch
      • Finance
        • Plotly.js
        • Portfolio
      • Mini Lab
        • Systems Administration
        • Auto Adjust Image
      • Sending Emails
      • ECS
        • Knowledge Base
        • ระบบผู้เชี่ยวชาญ (Expert System)
        • Check product
        • Compare two SQL databases
      • e-Library
        • Knowledge base
        • การจัดหมวดหมู่ห้องสมุด
        • Temp
      • AppSheet
        • บัญชีรายรับรายจ่าย
      • Weather App
      • COVID-19
  • Tutorials
    • Data Science
      • Data Science IPython notebooks
    • UX & UI
      • 7 กฎการออกแบบ UI
    • Web Scraping
      • Scrape Wikipedia Articles
      • Quick Start
    • GUI
      • pysimple
        • Create a GUI
      • Tkinter
        • Python Tkinter Tutorial
      • PyQt
        • PyQt Tutorial
    • MachineLearning
      • การพัฒนา Chat Bot
      • AI ผู้ช่วยใหม่ในการทำ Customer Segmentation
      • Customer Segmentation
      • ตัดคำภาษาไทย ด้วย PyThaiNLP API
    • Excel & VBA
      • INDEX กับ MATCH
      • รวมสูตร Excel ปี 2020
      • How to Write Code in a Spreadsheet
    • Visualization
      • Bokeh
        • Part I: Getting Started
        • Data visualization
        • Plotting a Line Graph
        • Panel Document
        • Interactive Data Visualization
    • VueJS
      • VueJS - Quick Guide
    • Django
      • Customize the Django Admin
      • พัฒนาเว็บด้วย Django
    • Git
      • วิธีสร้าง SSH Key
      • Git คืออะไร
      • เริ่มต้นใช้งาน Git
      • การใช้งาน Git และ Github
      • รวม 10 คำสั่ง Git
      • GIT Push and Pull
    • Finance
      • Stock Analysis using Pandas (Series)
      • Building Investment AI for fintech
      • Resampling Time Series
      • Python for Finance (Series)
      • Stock Data Analysis (Second Edition)
      • Get Stock Data Using Python
      • Stock Price Trend Analysis
      • Calculate Stock Returns
      • Quantitative Trading
      • Backtrader for Backtesting
      • Binance Python API
      • Pine Script (TradingView)
      • Stocks Analysis with Pandas and Scikit-Learn
      • Yahoo Finance API
      • Sentiment Analysis
      • yfinance Library
      • Stock Data Analysis
      • YAHOO_FIN
      • Algorithmic Trading
    • JavaScript
      • Split a number
      • Callback Function
      • The Best JavaScript Examples
      • File and FileReader
      • JavaScript Tutorial
      • Build Reusable HTML Components
      • Developing JavaScript components
      • JavaScript - Quick Guide
      • JavaScript Style Guide()
      • Beginner's Handbook
      • Date Now
    • Frontend
      • HTML
        • File Path
      • Static Site Generators.
        • Creating a New Theme
    • Flask
      • Flask - Quick Guide
      • Flask Dashboards
        • Black Dashboard
        • Light Blue
        • Flask Dashboard Argon
      • Create Flask App
        • Creating First Application
        • Rendering Pages Using Jinja
      • Jinja Templates
        • Primer on Jinja Templating
        • Jinja Template Document
      • Learning Flask
        • Ep.1 Your first Flask app
        • Ep.2 Flask application structure
        • Ep.3 Serving HTML files
        • Ep.4 Serving static files
        • Ep.5 Jinja template inheritance
        • Ep.6 Jinja template design
        • Ep.7 Working with forms in Flask
        • Ep.8 Generating dynamic URLs in Flask
        • Ep.9 Working with JSON data
        • Ep.23 Deploying Flask to a VM
        • Ep.24 Flask and Docker
        • Ep. 25: uWSGI Introduction
        • Ep. 26 Flask before and after request
        • Ep. 27 uWSGI Decorators
        • Ep. 28 uWSGI Decorators
        • Ep. 29 Flask MethodView
        • Ep. 30 Application factory pattern
      • The Flask Mega-Tutorial
        • Chapter 2: Templates
      • Building Flask Apps
      • Practical Flask tutorial series
      • Compiling SCSS to CSS
      • Flask application structure
    • Database
      • READING FROM DATABASES
      • SQLite
        • Data Management
        • Fast subsets of large datasets
      • Pickle Module
        • How to Persist Objects
      • Python SQL Libraries
        • Create Python apps using SQL Server
    • Python
      • Python vs JavaScript
      • Python Pillow – Adjust Image
      • Python Library for Google Search
      • Python 3 - Quick Guide
      • Regular Expressions
        • Python Regular Expressions
        • Regular Expression (RegEx)
        • Validate ZIP Codes
        • Regular Expression Tutorial
      • Python Turtle
      • Python Beginner's Handbook
      • From Beginner to Pro
      • Standard Library
      • Datetime Tutorial
        • Manipulate Times, Dates, and Time Spans
      • Work With a PDF
      • geeksforgeeks.org
        • Python Tutorial
      • Class
      • Modules
        • Modules List
        • pickle Module
      • Working With Files
        • Open, Read, Append, and Other File Handling
        • File Manipulation
        • Reading & Writing to text files
      • Virtual Environments
        • Virtual Environments made easy
        • Virtual Environmen
        • A Primer
        • for Beginners
      • Functions
        • Function Guide
        • Inner Functions
      • Learning Python
        • Pt. 4 Python Strings
        • Pt. 3 Python Variables
      • Zip Function
      • Iterators
      • Try and Except
        • Exceptions: Introduction
        • Exceptions Handling
        • try and excep
        • Errors and Exceptions
        • Errors & Exceptions
      • Control Flow
      • Lambda Functions
        • Lambda Expression คืออะไร
        • map() Function
      • Date and Time
        • Python datetime()
        • Get Current Date and Time
        • datetime in Python
      • Awesome Python
      • Dictionary
        • Dictionary Comprehension
        • ALL ABOUT DICTIONARIES
        • DefaultDict Type for Handling Missing Keys
        • The Definitive Guide
        • Why Functions Modify Lists and Dictionaries
      • Python Structures
      • Variable & Data Types
      • List
        • Lists Explained
        • List Comprehensions
          • Python List Comprehension
          • List Comprehensions in 5-minutes
          • List Comprehension
        • Python List
      • String
        • Strings and Character Data
        • Splitting, Concatenating, and Joining Strings
      • String Formatting
        • Improved String Formatting Syntax
        • String Formatting Best Practices
        • Remove Space
        • Add Spaces
      • Important basic syntax
      • List all the packages
      • comment
    • Pandas
      • Tutorial (GeeksforGeeks)
      • 10 minutes to pandas
      • Options and settings
      • เริ่มต้น Set Up Kaggle.com
      • Pandas - Quick Guide
      • Cookbook
      • NumPy
        • NumPy Package for Scientific
      • IO tools (text, CSV, …)
      • pandas.concat
      • Excel & Google Sheets
        • A Guide to Excel
        • Quickstart to the Google Sheets
        • Python Excel Tutorial: The Definitive Guide
      • Working With Text Data
        • Quickstart
      • API Reference
      • Groupby
      • DateTime Methods
      • DataFrame
      • sort_values()
      • Pundit: Accessing Data in DataFrames
      • datatable
        • DataFrame: to_json()
        • pydatatable
      • Read and Write Files
      • Data Analysis with Pandas
      • Pandas and Python: Top 10
      • 10 minutes to pandas
      • Getting Started with Pandas in Python
    • Markdown
      • Create Responsive HTML Emails
      • Using Markup Languages with Hugo
    • AngularJS
      • Learn AngularJS
    • CSS
      • The CSS Handbook
      • Box Shadow
      • Image Center
      • The CSS Handbook
      • The CSS Handbook
      • Loading Animation
      • CSS Grid Layout
      • Background Image Size
      • Flexbox
  • Series
    • จาวาสคริปต์เบื้องต้น
      • 1: รู้จักกับจาวาสคริปต์
  • Articles
    • Visualization
      • Dash
        • Introducing Dash
    • Finance
      • PyPortfolioOpt
      • Best Libraries for Finance
      • Detection of price support
      • Portfolio Optimization
      • Python Packages For Finance
    • Django
      • เริ่มต้น Django RestFramework
    • General
      • Heroku คืออะไร
      • How to Crack Passwords
    • Notebook
      • IPython Documentation
      • Importing Notebooks
      • Google Colab for Data Analytics
      • Creating Interactive Dashboards
      • The Definitive Guide
      • A gallery of interesting Jupyter Notebooks
      • Advanced Jupyter Notebooks
      • Converting HTML to Notebook
    • Pandas
      • Pandas_UI
      • Pandas Style API
      • Difference Between two Dataframes
      • 19 Essential Snippets in Pandas
      • Time Series Analysis
      • Selecting Columns in a DataFrame
      • Cleaning Up Currency Data
      • Combine Multiple Excel Worksheets
      • Stylin’ with Pandas
      • Pythonic Data Cleaning
      • Make Excel Faster
      • Reading Excel (xlsx) Files
      • How to use iloc and loc for Indexing
      • The Easiest Data Cleaning Method
    • Python
      • pip install package
      • Automating your daily tasks
      • Convert Speech to Text
      • Tutorial, Project Ideas, and Tips
      • Image Handling and Processing
        • Image Processing Part I
        • Image Processing Part II
        • Image tutorial
        • Image Processing with Numpy
        • Converts PIL Image to Numpy Array
      • Convert Dictionary To JSON
      • JSON Dump
      • Speech-to-Text Model
      • Convert Text to Speech
      • Tips & Tricks
        • Fundamentals for Data Science
        • Best Python Code Examples
        • Top 50 Tips & Tricks
        • 11 Beginner Tips
        • 10 Tips & Tricks
      • Password hashing
      • psutil
      • Lambda Expressions
    • Web Scraping
      • Web Scraping using Python
      • Build a Web Scraper
      • Web Scraping for beginner
      • Beautiful Soup
      • Scrape Websites
      • Python Web Scraping
        • Web Scraping Part 1
        • Web Scraping Part 2
        • Web Scraping Part 3
        • Web Scraping Part 4
      • Web Scraper
    • Frontend
      • Book Online with GitBook
      • Progressive Web App คืออะไร
      • self-host a Hugo web app
  • Examples
    • Django
      • Build a Portfolio App
      • SchoolManagement
    • Flask
      • Flask Stock Visualizer
      • Flask by Example
      • Building Flask Apps
      • Flask 101
    • OpenCV
      • Build a Celebrity Look-Alike
      • Face Detection-OpenCV
    • Python
      • Make Game FLASH CARD
      • Sending emails using Google
      • ตรวจหาภาพซ้ำด้วย Perceptual hashing
        • Sending Emails in Python
      • Deck of Cards
      • Extract Wikipedia Data
      • Convert Python File to EXE
      • Business Machine Learning
      • python-business-analytics
      • Simple Blackjack Game
      • Python Turtle Clock
      • Countdown
      • 3D Animation : Moon Phases
      • Defragmentation Algorithm
      • PDF File
        • จัดการข้อความ และรูป จากไฟล์ PDF ด้วย PDFBox
      • Reading and Generating QR codes
      • Generating Password
        • generate one-time password (OTP)
        • Random Password Generator
        • Generating Strong Password
      • PyQt: Building Calculator
      • List Files in a Directory
      • [Project] qID – โปรแกรมแต่งรูปง่ายๆ เพื่อการอัพลงเว็บ
      • Python and Google Docs to Build Books
      • Tools for Record Linking
      • Create Responsive HTML Email
      • psutil()
      • Transfer Learning for Deep Learning
      • ดึงข้อมูลคุณภาพอากาศประเทศไทย
        • Image Classification
    • Web Scraper
      • Scrape Wikipedia Articles
        • Untitled
      • How Scrape Websites with Python 3
    • Finance
      • Algorithmic Trading for Beginners
      • Parse TradingView Stock
      • Creating a stock price database with MariaDB and python
      • Source Code
        • stocks-list
      • Visualizing with D3
      • Real Time Stock in Excel using Python
      • Create Stock Quote Module
      • The Magic Formula Lost Its Sparkle?
      • Stock Market Analysis
      • Stock Portfolio Analyses Part 1
      • Stock Portfolio Analyses Part 2
      • Build A Dashboard In Python
      • Stock Market Predictions with LSTM
      • Trading example
      • Algorithmic Trading Strategies
      • DOWNLOAD FUNDAMENTALS DATA
      • Algorithmic Trading
      • numfin
      • Financial Machine Learning
      • Algorithm To Predict Stock Direction
      • Interactive Brokers API Code
      • The (Artificially) Intelligent Investor
      • Create Auto-Updating Excel of Stock Market
      • Stock Market Predictions
      • Automate Your Stock Portfolio
      • create an analytics dashboard
      • Bitcoin Price Notifications
      • Portfolio Management
    • WebApp
      • CSS
        • The Best CSS Examples
      • JavaScript
        • Memory Game
      • School Clock
      • Frontend Tutorials & Example
      • Side Menu Bar with sub-menu
      • Create Simple CPU Monitor App
      • Vue.js building a converter app
      • jQuery
        • The Best jQuery Examples
      • Image Slideshow
      • Handle Timezones
      • Text to Speech with Javascript
      • Building Blog for Your Portfolio
      • Responsive Website Layout
      • Maths Homework Generator
  • Books
    • Finance
      • Python for Finance (O'Reilly)
    • Website
      • Hugo
        • Go Bootcamp
        • Hugo in Action.
          • About this MEAP
          • Welcome
          • 1. The JAM stack with Hugo
          • 2. Live in 30 minutes
          • 3. Using Markup for content
          • 4. Content Management with Hugo
          • 5. Custom Pages and Customized Content
          • 6. Structuring web pages
          • A Appendix A.
          • B Appendix B.
          • C Appendix C.
    • Python
      • ภาษาไพธอนเบื้องต้น
      • Python Cheatsheet
        • Python Cheatsheet
      • Beginning Python
      • IPython Cookbook
      • The Quick Python Book
        • Case study
        • Part 1. Starting out
          • 1. About Python
          • 2. Getting started
          • 3. The Quick Python overview
        • Part 2. The essentials
          • 14. Exceptions
          • 13. Reading and writing files
          • 12. Using the filesystem
          • 11. Python programs
          • 10. Modules and scoping rules
          • 9. Functions
          • 8. Control flow
          • 4. The absolute basics
          • 5. Lists, tuples, and sets
          • 6. Strings
          • 7. Dictionaries
        • Part 3. Advanced language features
          • 19. Using Python libraries
          • 18. Packages
          • 17. Data types as objects
          • 16. Regular expressions
          • 15. Classes and OOP
        • Part 4. Working with data
          • Appendix B. Exercise answers
          • Appendix A. Python’s documentation
          • 24. Exploring data
          • 23. Saving data
          • 20. Basic file wrangling
          • 21. Processing data files
          • 22. Data over the network
      • The Hitchhiker’s Guide to Python
      • A Whirlwind Tour of Python
        • 9. Defining Functions
      • Automate the Boring Stuff
        • 4. Lists
        • 5. Dictionaries
        • 12. Web Scraping
        • 13. Excel
        • 14. Google Sheets
        • 15. PDF and Word
        • 16. CSV and JSON
    • IPython
    • Pandas
      • จัดการข้อมูลด้วย pandas เบื้องต้น
      • Pandas Tutorial
  • Link Center
    • Temp
  • เทควันโด
    • รวมเทคนิค
    • Help and Documentation
  • Image
    • Logistics
Powered by GitBook
On this page
  • Top 10 Python Packages For Finance And Financial Modeling
  • The Most Useful Python Packages For Finance
  • 1 NumPy
  • 2 SciPy
  • 3 Pandas
  • 4 statsmodels
  • 5 Quandl
  • 6 Zipline
  • 7 Pyfolio
  • 8 TA-Lib
  • 9 QuantLib
  • 10 Matplotlib
  • Conclusions

Was this helpful?

  1. Articles
  2. Finance

Python Packages For Finance

PreviousPortfolio OptimizationNextDjango

Last updated 4 years ago

Was this helpful?

Top 10 Python Packages For Finance And Financial Modeling

Top 10 Python Packages for finance

The popularity of the Python programming language is due, at least in part, to the versatility that it offers. In addition to the vast number of use cases in web and app development, Python provides the tools for building and implementing any type of scientific or mathematical model, regardless of the origin or type of data. This versatility is enabled by the extensive that offers a range of facilities intended to enhance the functionality and portability of the language. For more specific applications, the (PyPI) provides additional packages that extend the capabilities of Python to fit the needs of each domain.

The Most Useful Python Packages For Finance

The field of financial technologies is vast, encompassing everything from insurance, lending and trading, to e-banking and other payment services. This article focuses on applications specific to quantitative finance, which require programming tasks such as data importation and transformation, time series and risk analysis, trading and backtesting, excel integration, and data visualization. I sample a few of the best packages for accomplishing each task.

1 NumPy

For example, to create two 2×2 complex matrices and print the sum:

import numpy as np

a = np.array([[1+2j, 2+1j], [3, 4]])
b = np.array([[5, 6+6j], [7, 8+4j]])
print(a+b) 

Output:

[[6.+2.j   8.+7.j]
 [10.+0.j 12.+4.j]]

And to take the complex conjugate of one of them:

 np.conj(a) 

2 SciPy

To demonstrate interpolation, I first use NumPy to create some data points with an arbitrary function, then compare different interpolation methods:

from scipy.interpolate import interp1d
import pylab

x = np.linspace(0, 5, 10)
y = np.exp(x) / np.cos(np.pi * x)

f_nearest = interp1d(x, y, kind='nearest')
f_linear  = interp1d(x, y)
f_cubic   = interp1d(x, y, kind='cubic')

x2 = np.linspace(0, 5, 100)

pylab.plot(x, y, 'o', label='data points')
pylab.plot(x2, f_nearest(x2), label='nearest')
pylab.plot(x2, f_linear(x2), label='linear')
pylab.plot(x2, f_cubic(x2), label='cubic')
pylab.legend()
pylab.show() 

3 Pandas

To create a DataFrame:

import pandas as pd

df_1 = pd.DataFrame({'col1': [1,2], 'col2': [3,4]}) 
df_2 = pd.DataFrame({'col3': [5,6], 'col4': [7,8]})
df = pd.concat([df_1,df_2], axis = 1) 

Output:

    col1   col2    col3    col4
0      1      3       5       7 
1      2      4       6       8

To perform a simple filtering operation, extracting the row that meets the logical condition:

 df[df.col3 == 5]   

4 statsmodels

SciPy provides a library of statistical tools that allow users to construct a model, and pandas makes it easy to implement. The statsmodels package builds on these packages by implementing more advanced testing of different statistical models. An extensive list of result statistics and diagnostics for each estimator is available for any given model, with the goal of providing the user with a full picture of model performance. The results are tested against existing statistical packages to ensure that they are correct.

As an example, I import a built-in dataset:

import numpy as np
import statsmodels.api as sm

rand_data = sm.datasets.randhie.load(as_pandas=False)
rand_exog = rand_data.exog.view(float).reshape(len(rand_data.exog), -1)
rand_exog = sm.add_constant(rand_exog, prepend=False) 

And to fit the dataset with a Poisson model:

poisson_mod = sm.Poisson(rand_data.endog, rand_exog)
poisson_res = poisson_mod.fit(method="newton")
print(poisson_res.summary()) 

The output should look something like this:

5 Quandl

Up to now, the packages I have listed are impartial to the type of data being considered. Of course, when considering financial models, we need financial data. This is where Quandl comes to the rescue. The Quandl Python module gives users access to the vast collection of economic, financial, and market data collected from central banks, governments, multinational organizations and many other sources. Most of the raw datasets are free to access upon sign up (you need an API key), with more advanced and in-depth datasets available at a cost.

6 Zipline

Zipline is a package that ties the statistics, the data structures, and the data sources all together. It is a formidable algorithmic trading library for Python, evident by the fact that it powers Quantopian, a free platform for building and executing trading strategies. Data from Quandl is easily imported, and custom algorithms easily designed, tested, and implemented. This includes backtesting of algorithms and live trading. A basic algorithm looks like this:

from zipline.api import order, record, symbol

def initialize(context):
    pass

def handle_data(context, data):
    order(symbol('AAPL'), 10)
    record(AAPL=data.current(symbol('AAPL'), 'price')) 

7 Pyfolio

After designing and testing an algorithm in zipline, the pyfolio package provides an easy way to generate a tearsheet containing performance statistics. These statistics include annual/monthly returns, return quantiles, rolling beta/Sharpe ratios, portfolio turnover, and a few more. To generate a sample tearsheet on a single stock:

import pyfolio as pf

stock_rets = pf.utils.get_symbol_rets('FB')
pf.create_returns_tear_sheet(stock_rets, live_start_date='2015-12-1') 

The output will be a series of tables and plots containing the performance metrics.

8 TA-Lib

9 QuantLib

The second alternative to zipline and pyfolio is QuantLib. Similar to TA-Lib, QuantLib is written in C++ and then exported to Python. The QuantLib project aims to create a free, open-source library for modeling, trading, and risk management. The package contains tools to design and implement advanced algorithms that include features such as market conventions, yield curve models, solvers, PDEs, Monte Carlo, and others.

10 Matplotlib

Conclusions

All of these packages (except quantlib) are available on the ActiveState Platform for inclusion in your runtime environment. One of the key advantages of the ActiveState Platform is it’s “build environment on demand” capabilities, allowing you to build packages that contain C code from source without the need to set up your own environment or source your own compiler. If code provenance is of value to your organization, the ActiveState platform can help lower the time and resources you spend sourcing and building your runtimes.

For these reasons, Python has proven to be a formidable tool in developing novel financial technologies. From crunching the raw numbers to creating aesthetically pleasing, yet intuitive Graphical User Interfaces (GUIs), a myriad of packages exist to help users build their own financial models. In this article, I’ll highlight my top 10 packages for finance and financial modeling with a few basic examples. All of these packages (except quantlib) are available on the for inclusion in your runtime environment.

At base, all financial models rely on crunching numbers. The first few packages I have in the list provide the framework to do so. The first is NumPy. NumPy is the most essential package for scientific and mathematical computing in Python. Not only does it introduce n-dimensional arrays and matrices into Python, but also contains some basic mathematical functions to manipulate these data structures. Most of the higher-level for finance mentioned later in this list depend on NumPy.

More information about how NumPy is used can be found

The NumPy package provides basic mathematical structures for manipulating and storing data. But in order to build sophisticated models based on this data, a repository of more advanced statistical tools and operations is needed. Enter . This package provides functions and algorithms critical to the advanced scientific computations needed to build any statistical model. These include algorithms for interpolation, optimization, clustering, transformation, and integration of data. These operations are essential when performing any type of data analysis, or building any type of predictive model.

Interpolation Chart - Poisson Model - Top 10 Financial Packages - scipy

NumPy and SciPy lay the mathematical groundwork. The package, on the other hand, establishes an intuitive and easy-to-use data structure, a DataFrame, specifically designed for analysis and model building. It is based on the arrays that NumPy introduces, and is optimized for tabular, multidimensional, and heterogeneous data. The most common manipulations, such as groupby, joining, merging, or filling, replacing and imputing null values, can be executed in a single line. In addition, the package provides functions for importing data from a variety of standard formats, and others for rapid plotting, retrieving basic statistics, or outputting data.

And to concatenate two together:

Further examples can be found in the documentation .

Poisson Model - python packages for finance - statmodel

More information can be found .

The package documentation can be found .

We import the order, record, and symbol functions from zipline, to build an algorithm that records the stock price of Apple. For more examples of algorithms, see the .

Perfromance Metrics
Python packages for finance - Pyfolio
python packages for fnance
Rolling Values - python packages for finance
Returns over Time - python packages for finance
Return Quantities

The documentation has a few more that go into further detail.

The next two packages are alternatives to using zipline and pyfolio. The first is the Technical Analysis Library, or TA-Lib for short. The project is written in C++, but a wrapper for Python . Like zipline, TA-Lib provides common financial tools such as overlap studies, momentum indicators, volume indicators, volatility indicators, price transformations, cycle indicators, pattern recognition, and pure statistical functions.

A full list of the capabilities can be found .

The project has been around for almost 20 years, and there is extensive .

The aforementioned python packages for finance establish financial data sources, optimal data structures for financial data, as well as statistical models and evaluation mechanisms. But none provide one of the most important Python tools for financial modeling: data visualization (all the visualizations in this article are powered by ).

Not only is visualization important for understanding trends within financial data, but also for conveying insights to non-technical personnel. There are more than a few data visualization packages within Python, each with positives and negatives (see my article ), but the easiest to implement for financial modeling is matplotlib. This is mainly due to the fact that many of the packages in this list already rely on matplotlib. Additionally, the is plentiful, and the syntax simple and straightforward.

In this article, I’ve picked out the top 10 most useful python packages for finance. It’s interesting to note that since the last time ActiveState did a roundup of Python packages for finance (), many of the top packages have changed but numpy, scipy and matplotlib remain key.

Create a free ActiveState Platform account and using the packages listed in this post to kickstart your financial modeling initiative.

Reference :

ActiveState Platform
Python packages
here.
SciPy
panda’s
dataframes
here
here
here
documentation
examples
exists
here
documentation
matplotlib
here
documentation
2010
build your own custom runtime
https://www.activestate.com/blog/top-10-python-packages-for-finance-and-financial-modeling/
standard library
Python Package Index