📉
Tutorials
  • Computer History
  • Function
    • Finance
      • Calculate
    • Manage Data
    • Date&Time
    • Strings and Character
  • Snippets
    • Web Application
      • Hugo
      • JavaScript
        • Stopwatch using JavaScript?
    • Note
    • Start Project
      • GitHub
      • GitLab
    • Python Programming
      • Strings and Character Data
      • List
      • Dictionaries
    • Data Science
      • Setting Option
      • Get Data
  • Link Center
    • Next Articles
    • Google
    • Excel VBA
    • Python
      • Notebook
    • WebApp
      • Vue.js
    • Finance
    • Project
      • Kids
        • Scratch
      • Finance
        • Plotly.js
        • Portfolio
      • Mini Lab
        • Systems Administration
        • Auto Adjust Image
      • Sending Emails
      • ECS
        • Knowledge Base
        • ระบบผู้เชี่ยวชาญ (Expert System)
        • Check product
        • Compare two SQL databases
      • e-Library
        • Knowledge base
        • การจัดหมวดหมู่ห้องสมุด
        • Temp
      • AppSheet
        • บัญชีรายรับรายจ่าย
      • Weather App
      • COVID-19
  • Tutorials
    • Data Science
      • Data Science IPython notebooks
    • UX & UI
      • 7 กฎการออกแบบ UI
    • Web Scraping
      • Scrape Wikipedia Articles
      • Quick Start
    • GUI
      • pysimple
        • Create a GUI
      • Tkinter
        • Python Tkinter Tutorial
      • PyQt
        • PyQt Tutorial
    • MachineLearning
      • การพัฒนา Chat Bot
      • AI ผู้ช่วยใหม่ในการทำ Customer Segmentation
      • Customer Segmentation
      • ตัดคำภาษาไทย ด้วย PyThaiNLP API
    • Excel & VBA
      • INDEX กับ MATCH
      • รวมสูตร Excel ปี 2020
      • How to Write Code in a Spreadsheet
    • Visualization
      • Bokeh
        • Part I: Getting Started
        • Data visualization
        • Plotting a Line Graph
        • Panel Document
        • Interactive Data Visualization
    • VueJS
      • VueJS - Quick Guide
    • Django
      • Customize the Django Admin
      • พัฒนาเว็บด้วย Django
    • Git
      • วิธีสร้าง SSH Key
      • Git คืออะไร
      • เริ่มต้นใช้งาน Git
      • การใช้งาน Git และ Github
      • รวม 10 คำสั่ง Git
      • GIT Push and Pull
    • Finance
      • Stock Analysis using Pandas (Series)
      • Building Investment AI for fintech
      • Resampling Time Series
      • Python for Finance (Series)
      • Stock Data Analysis (Second Edition)
      • Get Stock Data Using Python
      • Stock Price Trend Analysis
      • Calculate Stock Returns
      • Quantitative Trading
      • Backtrader for Backtesting
      • Binance Python API
      • Pine Script (TradingView)
      • Stocks Analysis with Pandas and Scikit-Learn
      • Yahoo Finance API
      • Sentiment Analysis
      • yfinance Library
      • Stock Data Analysis
      • YAHOO_FIN
      • Algorithmic Trading
    • JavaScript
      • Split a number
      • Callback Function
      • The Best JavaScript Examples
      • File and FileReader
      • JavaScript Tutorial
      • Build Reusable HTML Components
      • Developing JavaScript components
      • JavaScript - Quick Guide
      • JavaScript Style Guide()
      • Beginner's Handbook
      • Date Now
    • Frontend
      • HTML
        • File Path
      • Static Site Generators.
        • Creating a New Theme
    • Flask
      • Flask - Quick Guide
      • Flask Dashboards
        • Black Dashboard
        • Light Blue
        • Flask Dashboard Argon
      • Create Flask App
        • Creating First Application
        • Rendering Pages Using Jinja
      • Jinja Templates
        • Primer on Jinja Templating
        • Jinja Template Document
      • Learning Flask
        • Ep.1 Your first Flask app
        • Ep.2 Flask application structure
        • Ep.3 Serving HTML files
        • Ep.4 Serving static files
        • Ep.5 Jinja template inheritance
        • Ep.6 Jinja template design
        • Ep.7 Working with forms in Flask
        • Ep.8 Generating dynamic URLs in Flask
        • Ep.9 Working with JSON data
        • Ep.23 Deploying Flask to a VM
        • Ep.24 Flask and Docker
        • Ep. 25: uWSGI Introduction
        • Ep. 26 Flask before and after request
        • Ep. 27 uWSGI Decorators
        • Ep. 28 uWSGI Decorators
        • Ep. 29 Flask MethodView
        • Ep. 30 Application factory pattern
      • The Flask Mega-Tutorial
        • Chapter 2: Templates
      • Building Flask Apps
      • Practical Flask tutorial series
      • Compiling SCSS to CSS
      • Flask application structure
    • Database
      • READING FROM DATABASES
      • SQLite
        • Data Management
        • Fast subsets of large datasets
      • Pickle Module
        • How to Persist Objects
      • Python SQL Libraries
        • Create Python apps using SQL Server
    • Python
      • Python vs JavaScript
      • Python Pillow – Adjust Image
      • Python Library for Google Search
      • Python 3 - Quick Guide
      • Regular Expressions
        • Python Regular Expressions
        • Regular Expression (RegEx)
        • Validate ZIP Codes
        • Regular Expression Tutorial
      • Python Turtle
      • Python Beginner's Handbook
      • From Beginner to Pro
      • Standard Library
      • Datetime Tutorial
        • Manipulate Times, Dates, and Time Spans
      • Work With a PDF
      • geeksforgeeks.org
        • Python Tutorial
      • Class
      • Modules
        • Modules List
        • pickle Module
      • Working With Files
        • Open, Read, Append, and Other File Handling
        • File Manipulation
        • Reading & Writing to text files
      • Virtual Environments
        • Virtual Environments made easy
        • Virtual Environmen
        • A Primer
        • for Beginners
      • Functions
        • Function Guide
        • Inner Functions
      • Learning Python
        • Pt. 4 Python Strings
        • Pt. 3 Python Variables
      • Zip Function
      • Iterators
      • Try and Except
        • Exceptions: Introduction
        • Exceptions Handling
        • try and excep
        • Errors and Exceptions
        • Errors & Exceptions
      • Control Flow
      • Lambda Functions
        • Lambda Expression คืออะไร
        • map() Function
      • Date and Time
        • Python datetime()
        • Get Current Date and Time
        • datetime in Python
      • Awesome Python
      • Dictionary
        • Dictionary Comprehension
        • ALL ABOUT DICTIONARIES
        • DefaultDict Type for Handling Missing Keys
        • The Definitive Guide
        • Why Functions Modify Lists and Dictionaries
      • Python Structures
      • Variable & Data Types
      • List
        • Lists Explained
        • List Comprehensions
          • Python List Comprehension
          • List Comprehensions in 5-minutes
          • List Comprehension
        • Python List
      • String
        • Strings and Character Data
        • Splitting, Concatenating, and Joining Strings
      • String Formatting
        • Improved String Formatting Syntax
        • String Formatting Best Practices
        • Remove Space
        • Add Spaces
      • Important basic syntax
      • List all the packages
      • comment
    • Pandas
      • Tutorial (GeeksforGeeks)
      • 10 minutes to pandas
      • Options and settings
      • เริ่มต้น Set Up Kaggle.com
      • Pandas - Quick Guide
      • Cookbook
      • NumPy
        • NumPy Package for Scientific
      • IO tools (text, CSV, …)
      • pandas.concat
      • Excel & Google Sheets
        • A Guide to Excel
        • Quickstart to the Google Sheets
        • Python Excel Tutorial: The Definitive Guide
      • Working With Text Data
        • Quickstart
      • API Reference
      • Groupby
      • DateTime Methods
      • DataFrame
      • sort_values()
      • Pundit: Accessing Data in DataFrames
      • datatable
        • DataFrame: to_json()
        • pydatatable
      • Read and Write Files
      • Data Analysis with Pandas
      • Pandas and Python: Top 10
      • 10 minutes to pandas
      • Getting Started with Pandas in Python
    • Markdown
      • Create Responsive HTML Emails
      • Using Markup Languages with Hugo
    • AngularJS
      • Learn AngularJS
    • CSS
      • The CSS Handbook
      • Box Shadow
      • Image Center
      • The CSS Handbook
      • The CSS Handbook
      • Loading Animation
      • CSS Grid Layout
      • Background Image Size
      • Flexbox
  • Series
    • จาวาสคริปต์เบื้องต้น
      • 1: รู้จักกับจาวาสคริปต์
  • Articles
    • Visualization
      • Dash
        • Introducing Dash
    • Finance
      • PyPortfolioOpt
      • Best Libraries for Finance
      • Detection of price support
      • Portfolio Optimization
      • Python Packages For Finance
    • Django
      • เริ่มต้น Django RestFramework
    • General
      • Heroku คืออะไร
      • How to Crack Passwords
    • Notebook
      • IPython Documentation
      • Importing Notebooks
      • Google Colab for Data Analytics
      • Creating Interactive Dashboards
      • The Definitive Guide
      • A gallery of interesting Jupyter Notebooks
      • Advanced Jupyter Notebooks
      • Converting HTML to Notebook
    • Pandas
      • Pandas_UI
      • Pandas Style API
      • Difference Between two Dataframes
      • 19 Essential Snippets in Pandas
      • Time Series Analysis
      • Selecting Columns in a DataFrame
      • Cleaning Up Currency Data
      • Combine Multiple Excel Worksheets
      • Stylin’ with Pandas
      • Pythonic Data Cleaning
      • Make Excel Faster
      • Reading Excel (xlsx) Files
      • How to use iloc and loc for Indexing
      • The Easiest Data Cleaning Method
    • Python
      • pip install package
      • Automating your daily tasks
      • Convert Speech to Text
      • Tutorial, Project Ideas, and Tips
      • Image Handling and Processing
        • Image Processing Part I
        • Image Processing Part II
        • Image tutorial
        • Image Processing with Numpy
        • Converts PIL Image to Numpy Array
      • Convert Dictionary To JSON
      • JSON Dump
      • Speech-to-Text Model
      • Convert Text to Speech
      • Tips & Tricks
        • Fundamentals for Data Science
        • Best Python Code Examples
        • Top 50 Tips & Tricks
        • 11 Beginner Tips
        • 10 Tips & Tricks
      • Password hashing
      • psutil
      • Lambda Expressions
    • Web Scraping
      • Web Scraping using Python
      • Build a Web Scraper
      • Web Scraping for beginner
      • Beautiful Soup
      • Scrape Websites
      • Python Web Scraping
        • Web Scraping Part 1
        • Web Scraping Part 2
        • Web Scraping Part 3
        • Web Scraping Part 4
      • Web Scraper
    • Frontend
      • Book Online with GitBook
      • Progressive Web App คืออะไร
      • self-host a Hugo web app
  • Examples
    • Django
      • Build a Portfolio App
      • SchoolManagement
    • Flask
      • Flask Stock Visualizer
      • Flask by Example
      • Building Flask Apps
      • Flask 101
    • OpenCV
      • Build a Celebrity Look-Alike
      • Face Detection-OpenCV
    • Python
      • Make Game FLASH CARD
      • Sending emails using Google
      • ตรวจหาภาพซ้ำด้วย Perceptual hashing
        • Sending Emails in Python
      • Deck of Cards
      • Extract Wikipedia Data
      • Convert Python File to EXE
      • Business Machine Learning
      • python-business-analytics
      • Simple Blackjack Game
      • Python Turtle Clock
      • Countdown
      • 3D Animation : Moon Phases
      • Defragmentation Algorithm
      • PDF File
        • จัดการข้อความ และรูป จากไฟล์ PDF ด้วย PDFBox
      • Reading and Generating QR codes
      • Generating Password
        • generate one-time password (OTP)
        • Random Password Generator
        • Generating Strong Password
      • PyQt: Building Calculator
      • List Files in a Directory
      • [Project] qID – โปรแกรมแต่งรูปง่ายๆ เพื่อการอัพลงเว็บ
      • Python and Google Docs to Build Books
      • Tools for Record Linking
      • Create Responsive HTML Email
      • psutil()
      • Transfer Learning for Deep Learning
      • ดึงข้อมูลคุณภาพอากาศประเทศไทย
        • Image Classification
    • Web Scraper
      • Scrape Wikipedia Articles
        • Untitled
      • How Scrape Websites with Python 3
    • Finance
      • Algorithmic Trading for Beginners
      • Parse TradingView Stock
      • Creating a stock price database with MariaDB and python
      • Source Code
        • stocks-list
      • Visualizing with D3
      • Real Time Stock in Excel using Python
      • Create Stock Quote Module
      • The Magic Formula Lost Its Sparkle?
      • Stock Market Analysis
      • Stock Portfolio Analyses Part 1
      • Stock Portfolio Analyses Part 2
      • Build A Dashboard In Python
      • Stock Market Predictions with LSTM
      • Trading example
      • Algorithmic Trading Strategies
      • DOWNLOAD FUNDAMENTALS DATA
      • Algorithmic Trading
      • numfin
      • Financial Machine Learning
      • Algorithm To Predict Stock Direction
      • Interactive Brokers API Code
      • The (Artificially) Intelligent Investor
      • Create Auto-Updating Excel of Stock Market
      • Stock Market Predictions
      • Automate Your Stock Portfolio
      • create an analytics dashboard
      • Bitcoin Price Notifications
      • Portfolio Management
    • WebApp
      • CSS
        • The Best CSS Examples
      • JavaScript
        • Memory Game
      • School Clock
      • Frontend Tutorials & Example
      • Side Menu Bar with sub-menu
      • Create Simple CPU Monitor App
      • Vue.js building a converter app
      • jQuery
        • The Best jQuery Examples
      • Image Slideshow
      • Handle Timezones
      • Text to Speech with Javascript
      • Building Blog for Your Portfolio
      • Responsive Website Layout
      • Maths Homework Generator
  • Books
    • Finance
      • Python for Finance (O'Reilly)
    • Website
      • Hugo
        • Go Bootcamp
        • Hugo in Action.
          • About this MEAP
          • Welcome
          • 1. The JAM stack with Hugo
          • 2. Live in 30 minutes
          • 3. Using Markup for content
          • 4. Content Management with Hugo
          • 5. Custom Pages and Customized Content
          • 6. Structuring web pages
          • A Appendix A.
          • B Appendix B.
          • C Appendix C.
    • Python
      • ภาษาไพธอนเบื้องต้น
      • Python Cheatsheet
        • Python Cheatsheet
      • Beginning Python
      • IPython Cookbook
      • The Quick Python Book
        • Case study
        • Part 1. Starting out
          • 1. About Python
          • 2. Getting started
          • 3. The Quick Python overview
        • Part 2. The essentials
          • 14. Exceptions
          • 13. Reading and writing files
          • 12. Using the filesystem
          • 11. Python programs
          • 10. Modules and scoping rules
          • 9. Functions
          • 8. Control flow
          • 4. The absolute basics
          • 5. Lists, tuples, and sets
          • 6. Strings
          • 7. Dictionaries
        • Part 3. Advanced language features
          • 19. Using Python libraries
          • 18. Packages
          • 17. Data types as objects
          • 16. Regular expressions
          • 15. Classes and OOP
        • Part 4. Working with data
          • Appendix B. Exercise answers
          • Appendix A. Python’s documentation
          • 24. Exploring data
          • 23. Saving data
          • 20. Basic file wrangling
          • 21. Processing data files
          • 22. Data over the network
      • The Hitchhiker’s Guide to Python
      • A Whirlwind Tour of Python
        • 9. Defining Functions
      • Automate the Boring Stuff
        • 4. Lists
        • 5. Dictionaries
        • 12. Web Scraping
        • 13. Excel
        • 14. Google Sheets
        • 15. PDF and Word
        • 16. CSV and JSON
    • IPython
    • Pandas
      • จัดการข้อมูลด้วย pandas เบื้องต้น
      • Pandas Tutorial
  • Link Center
    • Temp
  • เทควันโด
    • รวมเทคนิค
    • Help and Documentation
  • Image
    • Logistics
Powered by GitBook
On this page
  • RNNs: A Quick Overview
  • Imports/Loading Data
  • Preprocessing
  • Building/Training our Model
  • Generating Text
  • Conclusion
  • References

Was this helpful?

  1. Examples
  2. Finance

The (Artificially) Intelligent Investor

Apr 20 2020

PreviousInteractive Brokers API CodeNextCreate Auto-Updating Excel of Stock Market

Last updated 5 years ago

Was this helpful?

Shakespeare plays, Stephen King novels, and even Kanye lyrics have all served as training data for recurrent neural networks (RNNs) that generate text. While these projects are intriguing, I wanted to find a more practical use for text generation and decided to explore if RNNs could form coherent investing advice. After considering a few options, I chose to train the model on a copy of The Intelligent Investor by Benjamin Graham, which has been quoted by Warren Buffet as “the best book on investing ever written”. The model’s output certainly didn’t reveal the secret to beating the market as we’ll later see, but it’s still interesting to ponder if AI will one day be capable of offering sound financial advice.

RNNs: A Quick Overview

Imports/Loading Data

To start off, we make the necessary imports: Tensorflow, Numpy, and os.

import tensorflow as tfimport numpy as npimport os

Next step is to download our data, which is a .txt file of the Intelligent Investor. I removed the preface, index and a few graphs from the file to help our model generate more relevant text. Once we download the file, we take a look at how many total characters are in it.

from google.colab import files
files.upload()
text = open('The_Intelligent_Investor copy.txt',
 'rb').read().decode(encoding='utf-8')
print ('Length of text: {} characters'.format(len(text)))

Preprocessing

Let’s take a look at how many unique characters exist in the file.

vocab = sorted(set(text))
print ('{} unique characters'.format(len(vocab)))

Our model can’t understand letters so we have to vectorize the text. Each unique character is mapped to an integer for the computer to understand and integers are mapped to the characters so we can later decode the computer’s output.

#Maps characters to ints
char2int = {char: num for num, char in enumerate(vocab)}
#Maps ints to characters
int2char = np.array(vocab)
#Intelligent Investor text represented as ints.
text_as_int = np.array([char2int[char] for char in text])
print(char2int)
print(int2char)

We train the RNN model with the goal of teaching it to predict the most likely character after a given sequence of characters. To do this we will break input sequences from the text into an example sequence and target sequence. The target sequence is the example sequence shifted one character to the right, so the chunks of text have to be one character longer than the length of sequence. For example, if our text is “Stocks”, the example sequence would be “Stock” and the target sequence would be “tocks”.

seq_length = 100
examples_per_epoch = len(text)//(seq_length+1)
# Create examples and targets sequences
char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int)
sequences = char_dataset.batch(seq_length+1, drop_remainder=True)
def split_input_seq(chunk):
    example_text = chunk[:-1]
    target_text = chunk[1:]
    return example_text, target_text
dataset = sequences.map(split_input_seq)
#look at the first example and target sequence
for example_text, target_text in  dataset.take(1):
    print ('Example data: ',  repr(''.join(int2char[example_text.numpy()])))
    print ('Target data:',  repr(''.join(int2char[target_text.numpy()])))

We shuffle the data and segment it into batches before we train our model. The purpose of shuffling the data is to improve the performance of the model by avoiding overfitting, which is when the model learns the training data too closely and can’t generalize well to the test set.

batch_size = 64
buffer_size = 10000
dataset = dataset.shuffle(buffer_size).batch(batch_size, drop_remainder=True)

Building/Training our Model

With the data prepared for training, we create our model with three layers.

  1. The Embedding layer is our input layer that maps the integer representation of each character into dense vectors of 256 dimensions.

  2. The GRU layer is our hidden layer with 1024 RNN units.

  3. The Softmax layer is our output layer with 109 potential outputs (one for each of our 109 unique characters).

model = tf.keras.Sequential()
model.add(tf.keras.layers.Embedding(len(vocab), 256, batch_input_shape=[batch_size, None]))
model.add(tf.keras.layers.GRU(1024, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'))
model.add(tf.keras.layers.Dense(len(vocab)))
#summary of our model
model.summary()

Now, we compile our model with the Adam optimizer and sparse categorical cross entropy loss function.

def loss(labels, logits):
    return tf.keras.losses.sparse_categorical_crossentropy(labels,         logits, from_logits=True)
model.compile(optimizer='adam', loss=loss)

Before we train our model, we make sure to save checkpoints during training. By saving checkpoints, we can quickly recreate our model with a different batch size and restore the saved weights instead of training it again.

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
#Make sure the weights are saved
checkpoint_callback=tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_prefix, save_weights_only=True)
history = model.fit(dataset, epochs=30, callbacks=[checkpoint_callback])

Generating Text

Rebuild our model and load the weights with the batch size changed to 1, which makes the prediction simpler.

model = tf.keras.Sequential()
model.add(tf.keras.layers.Embedding(len(vocab), 256, batch_input_shape=[1, None]))
model.add(tf.keras.layers.GRU(1024, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'))
model.add(tf.keras.layers.Dense(len(vocab)))
#load weights from previous model
model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))
model.build(tf.TensorShape([1, None]))
#summary of our model
model.summary()

Summary of the new model

Here comes the moment of truth: our model finally reveals its investing advice! The temperature parameter affects the outputs we receive: a lower temperature results in a more conservative output while a higher temperature results in a more creative output that is prone to making more errors. We’ll see examples of this below.

#try any temperature in the range of 0.1 to 1
def generate_text(model, start_string, temperature):
    # Number of characters to generate
    num_generate = 1000
    # Converting our start string to numbers (vectorizing)
    input_eval = [char2int[s] for s in start_string]
    input_eval = tf.expand_dims(input_eval, 0)
    # Empty string to store our results
    text_generated = []
    model.reset_states()
    for i in range(num_generate):
        predictions = model(input_eval)
        # remove the batch dimension
        predictions = tf.squeeze(predictions, 0)
        predictions = predictions / temperature
        predicted_id = tf.random.categorical(predictions,     
        num_samples=1)[-1,0].numpy()
        input_eval = tf.expand_dims([predicted_id], 0)
        text_generated.append(int2char[predicted_id])
    return (start_string + ''.join(text_generated))
print(generate_text(model, start_string="Advice: ", temperature=.5))

Here’s the advice our model generates at a temperature of 0.1.

While the output isn’t even remotely close to any investing advice you should follow, it does a decent job of mimicking The Intelligent Investor. Due to the low temperature, our model doesn’t attempt to be creative and plays it safe by sticking to standard sentences in paragraph format. Let’s see how this changes as we increase the temperature.

At a temperature of 0.5, we can begin to see differences in the output. Our model tries to be more inventive and makes more errors as a result. An example of this is in the second to last line where parentheses are used incorrectly.

Now, the differences at a temperature of 1 are very apparent as our model attempts to generate tables. However, the tradeoff for this increased creativity is that the output becomes mostly incomprehensible. I’ve included a few more outputs at the various temperatures for reference.

Conclusion

As we saw, RNNs aren’t anywhere close to replacing investment advisors for now. With that being said, here are some ways that we can try to improve our model’s output.

  • Increase the number of epochs

  • Get a better training dataset (some formatting was messed up when converting The Intelligent Investor from a pdf to txt file)

  • Use an LSTM layer instead of GRU layer (LSTMs are another improved type of RNN)

References

Don’t leave yet!

Gated Recurrent Unit (Image from Wikipedia)

RNNs are analogous to human learning. When humans think, we don’t start our thinking from scratch each second. For example, in the sentence “Bob plays basketball”, we know that Bob is the person who plays basketball because we retain information about past words while reading sentences. Similarly, RNNs are neural networks with feedback loops, which allow them to use past information before arriving at a final output. However, RNNs can only connect recent information and cannot connect older information as the time gap grows. Gated Recurrent Units (GRUs) are an improved version of RNNs that overcome the short-term memory issue through an update gate that decides what information is relevant to pass on and a reset gate that decides what past information is irrelevant. For an in-depth explanation of GRUs, click.

Author’s Note: Definition of RNNs reused from my previous article “”

Example of the character to integer mapping
Example of the integer to character mapping
Summary of our model
temp = 0.1
temp = 0.5
temp = 1
temp = 0.1
temp = 0.5
temp = 1

[1] Google Team, , Tensorflow Core

[2] Aurélien Géron, , Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

I’m Roshan, a 16 year old passionate about the intersection of artificial intelligence and finance. If you’re further interested in RNNs applied to finance, check out this article:

Reach out to me on Linkedin:

Reference :

here
Machine Learning to Predict Stock Prices
Text generation with an RNN
Natural Language Processing with RNNs and Attention
https://towardsdatascience.com/predicting-stock-prices-using-a-keras-lstm-model-4225457f0233
https://www.linkedin.com/in/roshan-adusumilli-96b104194/
https://towardsdatascience.com/the-artificially-intelligent-investor-379a180e199f